期刊论文详细信息
Journal of Experimental & Clinical Cancer Research
Signaling by exosomal microRNAs in cancer
Igea D’Agnano2  Armando Felsani1  Germana Falcone2 
[1] Genomnia srl, Via Nerviano, 31/B – 20020, Lainate, MI, Italy;Institute of Cell Biology and Neurobiology, CNR, Via Ramarini 32-00015, Monterotondo, RM, Italy
关键词: Cell-to-cell communication;    Exosomes;    Tumor;    Small non-coding RNAs;   
Others  :  1161140
DOI  :  10.1186/s13046-015-0148-3
 received in 2015-02-06, accepted in 2015-03-16,  发布年份 2015
PDF
【 摘 要 】

A class of small non-coding RNAs, the microRNAs (miRNAs), have recently attracted great attention in cancer research since they play a central role in regulation of gene-expression and miRNA aberrant expression is found in almost all types of human cancer. The discovery of circulating miRNAs in body fluids and the finding that they are often tumor specific and can be detected early in tumorigenesis has soon led to the evaluation of their possible use as cancer biomarkers and treatment-response predictors. The evidence that tumor cells communicate via the secretion and delivery of miRNAs packed into tumor-released microvesicles has prompted to investigate miRNA contribution as signaling molecules to the establishment and maintenance of the tumor microenvironment and the metastatic niche in cancer. In this review we highlight the recent advances on the role of exosomal miRNAs as mediators of cancer cell-to-cell communication.

【 授权许可】

   
2015 Falcone et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150412090627149.pdf 1282KB PDF download
Figure 2. 47KB Image download
Figure 1. 99KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Ciesla M, Skrzypek K, Kozakowska M, Loboda A, Jozkowicz A, Dulak J: MicroRNAs as biomarkers of disease onset. Anal Bioanal Chem 2011, 401:2051-2061.
  • [2]Ma R, Jiang T, Kang X: Circulating microRNAs in cancer: origin, function and application. J Exp Clin Cancer Res 2012, 31:38.
  • [3]Liang H, Zhang J, Zen K, Zhang CY, Chen X: Nuclear microRNAs and their unconventional role in regulating non-coding RNAs. Protein Cell 2013, 4:325-330.
  • [4]Liu J, Zheng M, Tang YL, Liang XH, Yang Q: MicroRNAs, an active and versatile group in cancers. Int J Oral Sci 2011, 3:165-175.
  • [5]Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al.: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008, 18:997-1006.
  • [6]Chim SS, Shing TK, Hung EC, Leung TY, Lau TK, Chiu RW, et al.: Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 2008, 54:482-490.
  • [7]Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, et al.: Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 2008, 141:672-675.
  • [8]Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al.: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008, 105:10513-10518.
  • [9]Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, et al.: A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 2010, 28:655-661.
  • [10]Kosaka N, Izumi H, Sekine K, Ochiya T: microRNA as a new immune-regulatory agent in breast milk. Silence 2010, 1:7.
  • [11]Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, et al.: Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 2009, 15:5473-5477.
  • [12]Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al.: The microRNA spectrum in 12 body fluids. Clin Chem 2010, 56:1733-1741.
  • [13]Chen X, Liang H, Zhang J, Zen K, Zhang CY: Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol 2012, 22:125-132.
  • [14]Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA: MicroRNAs in body fluids–the mix of hormones and biomarkers. Nat Rev Clin Oncol 2011, 8:467-477.
  • [15]Turchinovich A, Burwinkel B: Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNABiol 2012, 9:1066-1075.
  • [16]Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al.: Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 2011, 108:5003-5008.
  • [17]Turchinovich A, Weiz L, Langheinz A, Burwinkel B: Characterization of extracellular circulating microRNA. Nucleic Acids Res 2011, 39:7223-7233.
  • [18]Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT: MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 2011, 13:423-433.
  • [19]Wagner J, Riwanto M, Besler C, Knau A, Fichtlscherer S, Roxe T, et al.: Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol 2013, 33:1392-1400.
  • [20]Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T: Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 2010, 285:17442-17452.
  • [21]Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, Gonzalez MA, et al.: Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2011, 2:282.
  • [22]Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, et al.: Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 2012, 119:756-766.
  • [23]Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, et al.: Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 2010, 107:6328-6333.
  • [24]Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al.: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008, 10:1470-1476.
  • [25]Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007, 9:654-659.
  • [26]Thery C, Zitvogel L, Amigorena S: Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002, 2:569-579.
  • [27]Yuana Y, Sturk A, Nieuwland R: Extracellular vesicles in physiological and pathological conditions. Blood Rev 2013, 27:31-39.
  • [28]Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al.: Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008, 319:1244-1247.
  • [29]Gutierrez-Vazquez C, Villarroya-Beltri C, Mittelbrunn M, Sanchez-Madrid F: Transfer of extracellular vesicles during immune cell-cell interactions. Immunol Rev 2013, 251:125-142.
  • [30]Villarroya-Beltri C, Baixauli F, Gutierrez-Vazquez C, Sanchez-Madrid F, Mittelbrunn M: Sorting it out: regulation of exosome loading. Semin Cancer Biol 2014, 28:3-13.
  • [31]Nolte-'t Hoen EN, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH, 't Hoen PA: Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res 2012, 40:9272-9285.
  • [32]Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, et al.: Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2011, 2:180.
  • [33]Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, et al.: Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 2014, 24:766-769.
  • [34]Mayers JR, Audhya A: Vesicle formation within endosomes: An ESCRT marks the spot. Commun Integr Biol 2012, 5:50-56.
  • [35]Taylor DD, Gercel-Taylor C: Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Semin Immunopathol 2011, 33:441-454.
  • [36]Ji H, Chen M, Greening DW, He W, Rai A, Zhang W, et al.: Deep sequencing of RNA from three different extracellular vesicle (EV) subtypes released from the human LIM1863 colon cancer cell line uncovers distinct miRNA-enrichment signatures. PLoSOne 2014, 9:e110314.
  • [37]Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P, et al.: Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med 2002, 195:1303-1316.
  • [38]Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, et al.: Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 2010, 120:457-471.
  • [39]Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z: Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol 2008, 180:7249-7258.
  • [40]Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL: Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoSOne 2010, 5:e11469.
  • [41]Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL: Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol 2009, 183:3720-3730.
  • [42]Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, Deregibus MC, et al.: Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 2011, 71:5346-5356.
  • [43]Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al.: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012, 18:883-891.
  • [44]Taverna S, Amodeo V, Saieva L, Russo A, Giallombardo M, De Leo G, et al.: Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myelogenous leukemia cells. Mol Cancer 2014, 13:169.
  • [45]Salido-Guadarrama I, Romero-Cordoba S, Peralta-Zaragoza O, Hidalgo-Miranda A, Rodriguez-Dorantes M: MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer. Onco Targets Ther 2014, 7:1327-1338.
  • [46]El Lee Y, Andaloussi S, Wood MJ: Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 2012, 21:R125-R134.
  • [47]Raiborg C, Stenmark H: The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 2009, 458:445-452.
  • [48]Tamai K, Tanaka N, Nakano T, Kakazu E, Kondo Y, Inoue J, et al.: Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochem Biophys Res Commun 2010, 399:384-390.
  • [49]Wollert T, Hurley JH: Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 2010, 464:864-869.
  • [50]Rayner KJ, Hennessy EJ: Extracellular communication via microRNA: lipid particles have a new message. J Lipid Res 2013, 54:1174-1181.
  • [51]Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F, Perez-Hernandez D, Vazquez J, Martin-Cofreces N, et al.: Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 2013, 4:2980.
  • [52]Chen TS, Lai RC, Lee MM, Choo AB, Lee CN, Lim SK: Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 2010, 38:215-224.
  • [53]Li L, Zhu D, Huang L, Zhang J, Bian Z, Chen X, et al.: Argonaute 2 complexes selectively protect the circulating microRNAs in cell-secreted microvesicles. PLoSOne 2012, 7:e46957.
  • [54]Pigati L, Yaddanapudi SC, Iyengar R, Kim DJ, Hearn SA, Danforth D, et al.: Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoSOne 2010, 5:e13515.
  • [55]Zhou Q, Li M, Wang X, Li Q, Wang T, Zhu Q, et al.: Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci 2012, 8:118-123.
  • [56]Melo SA, Sugimoto H, O'Connell T, Noritoshi K, Villanueva A, Vidal A, et al.: Cancer Exosomes Perform Cell-Independent MicroRNA Biogenesis and Promote Tumorigenesis. Cancer Cell 2014, 26:707-721.
  • [57]Bolukbasi MF, Mizrak A, Ozdener GB, Madlener S, Strobel T, Erkan EP, et al.: miR-1289 and "Zipcode"-like Sequence Enrich mRNAs in Microvesicles. MolTherNucleic Acids 2012, 1:e10.
  • [58]Squadrito ML, Baer C, Burdet F, Maderna C, Gilfillan GD, Lyle R, et al.: Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep 2014, 8:1432-1446.
  • [59]Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJ, Zeiher AM, et al.: Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 2012, 14:249-256.
  • [60]Ramachandran S, Palanisamy V: Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. WileyInterdiscipRevRNA 2012, 3:286-293.
  • [61]Simons M, Raposo G: Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 2009, 21:575-581.
  • [62]Zomer A, Vendrig T, Hopmans ES, van Eijndhoven M, Middeldorp JM, Pegtel DM: Exosomes: Fit to deliver small RNA. Commun Integr Biol 2010, 3:447-450.
  • [63]Hu G, Drescher KM, Chen XM: Exosomal miRNAs: Biological Properties and Therapeutic Potential. Front Genet 2012, 3:56.
  • [64]Mulcahy LA, Pink RC, Carter DR: Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 2014, 3:24641.
  • [65]Bauer M, Pelkmans L: A new paradigm for membrane-organizing and -shaping scaffolds. FEBS Lett 2006, 580:5559-5564.
  • [66]Mathivanan S, Ji H, Simpson RJ: Exosomes: extracellular organelles important in intercellular communication. J Proteomics 2010, 73:1907-1920.
  • [67]Thuma F, Zoller M: Outsmart tumor exosomes to steal the cancer initiating cell its niche. Semin Cancer Biol 2014, 28:39-50.
  • [68]Chen PS, Su JL, Hung MC: Dysregulation of microRNAs in cancer. J Biomed Sci 2012, 19:90.
  • [69]Filipazzi P, Burdek M, Villa A, Rivoltini L, Huber V: Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol 2012, 22:342-349.
  • [70]Gao F, Zhao ZL, Zhao WT, Fan QR, Wang SC, Li J, et al.: miR-9 modulates the expression of interferon-regulated genes and MHC class I molecules in human nasopharyngeal carcinoma cells. Biochem Biophys Res Commun 2013, 431:610-616.
  • [71]Ueda R, Kohanbash G, Sasaki K, Fujita M, Zhu X, Kastenhuber ER, et al.: Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci U S A 2009, 106:10746-10751.
  • [72]Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, et al.: Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoSOne 2010, 5:e13247.
  • [73]Ostenfeld MS, Jeppesen DK, Laurberg JR, Boysen AT, Bramsen JB, Primdal-Bengtson B, et al.: Cellular Disposal of miR23b by RAB27-Dependent Exosome Release Is Linked to Acquisition of Metastatic Properties. Cancer Res 2014, 74:5758-5771.
  • [74]Igaz I, Igaz P: Tumor surveillance by circulating microRNAs: a hypothesis. Cell Mol Life Sci 2014, 71:4081-4087.
  • [75]Donadelli M, Dando I, Fiorini C, Palmieri M: Regulation of miR-23b expression and its dual role on ROS production and tumour development. Cancer Lett 2014, 349:107-113.
  • [76]Yang M, Chen J, Su F, Yu B, Su F, Lin L, et al.: Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 2011, 10:117.
  • [77]Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al.: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006, 103:2257-2261.
  • [78]Wang B, Zhang Q: The expression and clinical significance of circulating microRNA-21 in serum of five solid tumors. J Cancer Res Clin Oncol 2012, 138:1659-1666.
  • [79]Cappellesso R, Tinazzi A, Giurici T, Simonato F, Guzzardo V, Ventura L, et al.: Programmed cell death 4 and microRNA 21 inverse expression is maintained in cells and exosomes from ovarian serous carcinoma effusions. Cancer Cytopathol 2014, 122:685-693.
  • [80]Leidinger P, Backes C, Dahmke IN, Galata V, Huwer H, Stehle I, et al.: What makes a blood cell based miRNA expression pattern disease specific? - A miRNome analysis of blood cell subsets in lung cancer patients and healthy controls. Oncotarget 2014, 5:9484-9497.
  • [81]Ogata-Kawata H, Izumiya M, Kurioka D, Honma Y, Yamada Y, Furuta K, et al.: Circulating exosomal microRNAs as biomarkers of colon cancer. PLoSOne 2014, 9:e92921.
  • [82]Que R, Ding G, Chen J, Cao L: Analysis of serum exosomal microRNAs and clinicopathologic features of patients with pancreatic adenocarcinoma. World J Surg Oncol 2013, 11:219.
  • [83]Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, et al.: MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008, 27:4373-4379.
  • [84]Yan LX, Wu QN, Zhang Y, Li YY, Liao DZ, Hou JH, et al.: Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer Res 2011, 13:R2.
  • [85]Fabbri M, Paone A, Calore F, Galli R, Croce CM: A new role for microRNAs, as ligands of Toll-like receptors. RNABiol 2013, 10:169-174.
  • [86]Mittelbrunn M, Sanchez-Madrid F: Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol 2012, 13:328-335.
  • [87]Shah MY, Calin GA: The mix of two worlds: non-coding RNAs and hormones. Nucleic Acid Ther 2013, 23:2-8.
  • [88]Hood JL, San RS, Wickline SA: Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 2011, 71:3792-3801.
  • [89]Rana S, Malinowska K, Zoller M: Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia 2013, 15:281-295.
  • [90]Mu W, Rana S, Zoller M: Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia 2013, 15:875-887.
  • [91]Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, et al.: Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 2014, 25:501-515.
  • [92]Epstein DM: Special delivery: microRNA-200-containing extracellular vesicles provide metastatic message to distal tumor cells. J Clin Invest 2014, 124:5107-5108.
  • [93]Le MT, Hamar P, Guo C, Basar E, Perdigao-Henriques R, Balaj L, et al.: miR-200-containing extracellular vesicles promote breast cancer cell metastasis. J Clin Invest 2014, 124:5109-5128.
  • [94]Umezu T, Ohyashiki K, Kuroda M, Ohyashiki JH: Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene 2013, 32:2747-2755.
  • [95]Zhuang G, Wu X, Jiang Z, Kasman I, Yao J, Guan Y, et al.: Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J 2012, 31:3513-3523.
  • [96]Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T: Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem 2013, 288:10849-10859.
  • [97]Abdi J, Qiu L, Chang H: Micro-RNAs, New performers in multiple myeloma bone marrow microenvironment. Biomark Res 2014, 2:10.
  • [98]Gao X, Zhang R, Qu X, Zhao M, Zhang S, Wu H, et al.: MiR-15a, miR-16-1 and miR-17-92 cluster expression are linked to poor prognosis in multiple myeloma. Leuk Res 2012, 36:1505-1509.
  • [99]Sun CY, She XM, Qin Y, Chu ZB, Chen L, Ai LS, et al.: miR-15a and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF. Carcinogenesis 2013, 34:426-435.
  • [100]Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M, et al.: BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest 2013, 123:1542-1555.
  • [101]Ye SB, Li ZL, Luo DH, Huang BJ, Chen YS, Zhang XS, et al.: Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget 2014, 5:5439-5452.
  • [102]Eichelser C, Stuckrath I, Muller V, Milde-Langosch K, Wikman H, Pantel K, et al.: Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget 2014, 5:9650-9663.
  • [103]Migliore C, Giordano S: Resistance to targeted therapies: a role for microRNAs? Trends Mol Med 2013, 19:633-642.
  • [104]Zheng T, Wang J, Chen X, Liu L: Role of microRNA in anticancer drug resistance. Int J Cancer 2010, 126:2-10.
  • [105]Corcoran C, Rani S, O'Brien K, O'Neill A, Prencipe M, Sheikh R, et al.: Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoSOne 2012, 7:e50999.
  • [106]O'Brien K, Rani S, Corcoran C, Wallace R, Hughes L, Friel AM, et al.: Exosomes from triple-negative breast cancer cells can transfer phenotypic traits representing their cells of origin to secondary cells. Eur J Cancer 2013, 49:1845-1859.
  • [107]Safaei R, Larson BJ, Cheng TC, Gibson MA, Otani S, Naerdemann W, et al.: Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther 2005, 4:1595-1604.
  • [108]Chen WX, Liu XM, Lv MM, Chen L, Zhao JH, Zhong SL, et al.: Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoSOne 2014, 9:e95240.
  • [109]Corcoran C, Rani S, O'Driscoll L: miR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression. Prostate 2014, 74:1320-1334.
  • [110]Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P: Delivery of Functional Anti-miR-9 by Mesenchymal Stem Cell-derived Exosomes to Glioblastoma Multiforme Cells Conferred Chemosensitivity. Mol Ther Nucleic Acids 2013, 2:e126.
  • [111]Nana-Sinkam SP, Croce CM: MicroRNAs as therapeutic targets in cancer. Transl Res 2011, 157:216-225.
  • [112]Krell J, Frampton AE, Stebbing J: MicroRNAs in the cancer clinic. Front Biosci 2013, 5:204-213.
  • [113]Ling H, Fabbri M, Calin GA: MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 2013, 12:847-865.
  • [114]Lee HK, Finniss S, Cazacu S, Bucris E, Ziv-Av A, Xiang C, et al.: Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget 2013, 4:346-361.
  • [115]Prokopi M, Kousparou CA, Epenetos AA: The Secret Role of microRNAs in Cancer Stem Cell Development and Potential Therapy: A Notch-Pathway Approach. Front Oncol 2014, 4:389.
  • [116]Li XJ, Ren ZJ, Tang JH: MicroRNA-34a: a potential therapeutic target in human cancer. Cell Death Dis 2014, 5:e1327.
  • [117]Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, et al.: MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoSOne 2009, 4:e6816.
  • [118]Yu G, Yao W, Xiao W, Li H, Xu H, Lang B: MicroRNA-34a functions as an anti-metastatic microRNA and suppresses angiogenesis in bladder cancer by directly targeting CD44. J Exp Clin Cancer Res 2014, 33:779.
  • [119]Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al.: RAS is regulated by the let-7 microRNA family. Cell 2005, 120:635-647.
  • [120]Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al.: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011, 17:211-215.
  • [121]Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, et al.: MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 2007, 67:9762-9770.
  • [122]Sun X, Jiao X, Pestell TG, Fan C, Qin S, Mirabelli E, et al.: MicroRNAs and cancer stem cells: the sword and the shield. Oncogene 2014, 33:4967-4977.
  • [123]Thornton JE, Gregory RI: How does Lin28 let-7 control development and disease? Trends Cell Biol 2012, 22:474-482.
  • [124]Tsang WP, Kwok TT: Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis 2008, 13:1215-1222.
  • [125]Kobayashi M, Salomon C, Tapia J, Illanes SE, Mitchell MD, Rice GE: Ovarian cancer cell invasiveness is associated with discordant exosomal sequestration of Let-7 miRNA and miR-200. J Transl Med 2014, 12:4.
  • [126]Wang W, Li J, Zhu W, Gao C, Jiang R, Li W, et al.: MicroRNA-21 and the clinical outcomes of various carcinomas: a systematic review and meta-analysis. BMC Cancer 2014, 14:819.
  • [127]Zhu W, Xu B: MicroRNA-21 identified as predictor of cancer outcome: a meta-analysis. PLoSOne 2014, 9:e103373.
  • [128]Song B, Wang C, Liu J, Wang X, Lv L, Wei L, et al.: MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. J Exp Clin Cancer Res 2010, 29:29.
  • [129]Mogilyansky E, Rigoutsos I: The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 2013, 20:1603-1614.
  • [130]Bai Y, Sun Y, Peng J, Liao H, Gao H, Guo Y, et al.: Overexpression of secretagogin inhibits cell apoptosis and induces chemoresistance in small cell lung cancer under the regulation of miR-494. Oncotarget 2014, 5:7760-7775.
  • [131]Cheng HH, Mitchell PS, Kroh EM, Dowell AE, Chery L, Siddiqui J, et al.: Circulating microRNA profiling identifies a subset of metastatic prostate cancer patients with evidence of cancer-associated hypoxia. PLoSOne 2013, 8:e69239.
  • [132]Muller V, Gade S, Steinbach B, Loibl S, von Minckwitz G, Untch M, et al.: Changes in serum levels of miR-21, miR-210, and miR-373 in HER2-positive breast cancer patients undergoing neoadjuvant therapy: a translational research project within the Geparquinto trial. Breast Cancer Res Treat 2014, 147:61-68.
  • [133]Qin Q, Furong W, Baosheng L: Multiple functions of hypoxia-regulated miR-210 in cancer. J Exp Clin Cancer Res 2014, 33:50.
  • [134]Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, et al.: miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010, 12:247-256.
  • [135]Guglielmi L, Cinnella C, Nardella M, Maresca G, Valentini A, Mercanti D, et al.: MYCN gene expression is required for the onset of the differentiation programme in neuroblastoma cells. Cell Death Dis 2014, 5:e1081.
  • [136]Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, et al.: MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A 2005, 102:18081-18086.
  • [137]Gillies JK, Lorimer IA: Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 2007, 6:2005-2009.
  • [138]Kawaguchi T, Komatsu S, Ichikawa D, Morimura R, Tsujiura M, Konishi H, et al.: Clinical impact of circulating miR-221 in plasma of patients with pancreatic cancer. Br J Cancer 2013, 108:361-369.
  • [139]Park JK, Lee EJ, Esau C, Schmittgen TD: Antisense inhibition of microRNA-21 or −221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas 2009, 38:e190-e199.
  • [140]Teixeira AL, Ferreira M, Silva J, Gomes M, Dias F, Santos JI, et al.: Higher circulating expression levels of miR-221 associated with poor overall survival in renal cell carcinoma patients. Tumour Biol 2014, 35:4057-4066.
  • [141]Vaksman O, Stavnes HT, Kaern J, Trope CG, Davidson B, Reich R: miRNA profiling along tumour progression in ovarian carcinoma. JCell MolMed 2011, 15:1593-1602.
  • [142]Yang Y, Gu X, Zhou M, Xiang J, Chen Z: Serum microRNAs: A new diagnostic method for colorectal cancer. Biomed Rep 2013, 1:495-498.
  • [143]Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X, et al.: MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem 2008, 283:31079-31086.
  • [144]Althoff K, Lindner S, Odersky A, Mestdagh P, Beckers A, Karczewski S, et al.: miR-542-3p exerts tumor suppressive functions in neuroblastoma by downregulating Survivin. Int J Cancer. 2014
  • [145]Wang Y, Huang JW, Castella M, Huntsman DG, Taniguchi T: p53 is positively regulated by miR-542-3p. Cancer Res 2014, 74:3218-3227.
  • [146]Jiang JX, Gao S, Pan YZ, Yu C, Sun CY: Overexpression of microRNA-125b sensitizes human hepatocellular carcinoma cells to 5-fluorouracil through inhibition of glycolysis by targeting hexokinase II. Mol Med Rep 2014, 10:995-1002.
  • [147]Liang L, Wong CM, Ying Q, Fan DN, Huang S, Ding J, et al.: MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. Hepatology 2010, 52:1731-1740.
  • [148]Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi Y, et al.: MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem 2010, 285:21496-21507.
  • [149]Li Y, Chao Y, Fang Y, Wang J, Wang M, Zhang H, et al.: MTA1 promotes the invasion and migration of non-small cell lung cancer cells by downregulating miR-125b. J Exp Clin Cancer Res 2013, 32:33.
  • [150]Honeywell DR, Cabrita MA, Zhao H, Dimitroulakos J, Addison CL: miR-105 inhibits prostate tumour growth by suppressing CDK6 levels. PLoSOne 2013, 8:e70515.
  • [151]Shen G, Rong X, Zhao J, Yang X, Li H, Jiang H, et al.: MicroRNA-105 suppresses cell proliferation and inhibits PI3K/AKT signaling in human hepatocellular carcinoma. Carcinogenesis 2014, 35:2748-2755.
  • [152]Sirotkin AV, Laukova M, Ovcharenko D, Brenaut P, Mlyncek M: Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol 2010, 223:49-56.
  • [153]Yan W, Li R, Liu Y, Yang P, Wang Z, Zhang C, et al.: MicroRNA expression patterns in the malignant progression of gliomas and a 5-microRNA signature for prognosis. Oncotarget 2014, 5:12908-12915.
  • [154]Schmitt MJ, Margue C, Behrmann I, Kreis S: MiRNA-29: a microRNA family with tumor-suppressing and immune-modulating properties. Curr Mol Med 2013, 13:572-585.
  • [155]Wang Y, Zhang X, Li H, Yu J, Ren X: The role of miRNA-29 family in cancer. Eur J Cell Biol 2013, 92:123-128.
  • [156]Wu Z, Huang X, Huang X, Zou Q, Guo Y: The inhibitory role of Mir-29 in growth of breast cancer cells. J Exp Clin Cancer Res 2013, 32:98.
  文献评价指标  
  下载次数:15次 浏览次数:8次