| Diabetology & Metabolic Syndrome | |
| Pioglitazone alters monocyte populations and stimulates recent thymic emigrants in the BBDZR/Wor type 2 diabetes rat model | |
| Vanessa M. Morales-Tirado3  Jena J. Steinle1  Youde Jiang2  Ryan P. Lee2  Bradley T. Gao2  | |
| [1] Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA;Department of Ophthalmology, College of Medicine, The University of Tennessee Health Science Center, Memphis 38163, TN, USA;Department of Microbiology, Immunology and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis 38163, TN, USA | |
| 关键词: Recent thymic emigrants; Immunomodulation; Type 2 diabetes; Pioglitazone; | |
| Others : 1225021 DOI : 10.1186/s13098-015-0068-6 |
|
| received in 2015-01-22, accepted in 2015-08-19, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Type 2 diabetes is commonly characterized by insulin deficiency and decreased sensitivity of insulin receptors, leading to a chronic state of hyperglycemia in individuals. Disease progression induces changes in the immune profile that engenders a chronic inflammatory condition. Thiazolidinedione (TDZ) drugs, such as Pioglitazone (Pio), aid in controlling disease symptoms. While the mechanisms by which Pio controls hyperglycemia are beginning to be understood, relatively little is known about the effects of Pio on suppression of the systemic immune phenotype, attributed to visceral adipose tissue and macrophages.
Methods
Here, we utilize the recently developed BBDZR/Wor type 2 diabetes rat model to test our hypothesis that a selective in vivo growth of CD3 + T cells in the spleen contributes to the increase in T lymphocytes, including Tregs, independent of visceral adipose tissue. We investigated the systemic effects of Pio on multifactorial aspects of the disease-induced immune phenotype both in vivo and in vitro in normal, non-diabetic animals and in disease.
Results
Our work revealed that Pio reversed the lymphopenic status of diabetic rats, in part by an increase in CD3 +T lymphocytes and related subsets. Moreover, we found evidence that Pio caused a selective growth of newly differentiated T lymphocytes, based on the presence of recent thymic emigrants in vivo. To investigate effects of Pio on the inflammatory milieu, we examined the production of the signature cytokines TNF-α and IL-1β and found they were reduced by Pio-treatment, while the levels of IL-4, an anti-inflammatory mediator, were significantly increased in a Pio-dependent manner. The increase in IL-4 production, although historically attributed to macrophages from visceral adipose tissue under other conditions, came also from CD3 +T lymphocytes from the spleen, suggesting splenocytes contribute to the Pio-induced shift towards an anti-inflammatory phenotype.
Conclusions
We show for the first time that Pio treatment significantly suppresses the systemic inflammatory status in the BBDZR/Wor type 2 diabetes rat model by the selective growth of newly differentiated CD3 +T cells and by increasing CD3 + IL-4 production in immigrant spleen lymphocytes.
【 授权许可】
2015 Gao et al.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150917032004366.pdf | 3021KB | ||
| Fig.4. | 49KB | Image | |
| Fig.3. | 56KB | Image | |
| Fig.2. | 47KB | Image | |
| Fig.1. | 79KB | Image |
【 图 表 】
Fig.1.
Fig.2.
Fig.3.
Fig.4.
【 参考文献 】
- [1]Association AD. Diabetes statistics: data from the 2012 National Diabetes Fact Sheet., Alexandria, Virginia. 2012. http://www.diabetes.org/diabetes-basics/diabetes-statistics/. Accessed 1 Dec 2014.
- [2]Adebayo O, Willis GC: The changing face of diabetes in America. Emerg Med Clin North Am 2014, 32(2):319-327.
- [3]Organization. WH. World Health Organization: 10 facts about diabetes. 2011.
- [4]Donath MY, Shoelson SE: Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011, 11(2):98-107.
- [5]Yau H, Rivera K, Lomonaco R, Cusi K: The future of thiazolidinedione therapy in the management of type 2 diabetes mellitus. Curr Diab Rep. 2013, 13(3):329-341.
- [6]Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA: An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 1995, 270(22):12953-12956.
- [7]Sinha B, Ghosal S: Pioglitazone—do we really need it to manage type 2 diabetes? Diabetes Metab Syndr. 2013, 7(4):243-246.
- [8]Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, et al.: Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARgamma): a review. Biochem Pharmacol 2014.
- [9]Hofmann C, Lorenz K, Braithwaite SS, Colca JR, Palazuk BJ, Hotamisligil GS, et al.: Altered gene expression for tumor necrosis factor-alpha and its receptors during drug and dietary modulation of insulin resistance. Endocrinology 1994, 134(1):264-270.
- [10]Ikeda H, Taketomi S, Sugiyama Y, Shimura Y, Sohda T, Meguro K, et al.: Effects of pioglitazone on glucose and lipid metabolism in normal and insulin resistant animals. Arzneimittelforschung 1990, 40(2 Pt 1):156-162.
- [11]Sugiyama Y, Shimura Y, Ikeda H: Effects of pioglitazone on hepatic and peripheral insulin resistance in Wistar fatty rats. Arzneimittelforschung 1990, 40(4):436-440.
- [12]Sugiyama Y, Taketomi S, Shimura Y, Ikeda H, Fujita T: Effects of pioglitazone on glucose and lipid metabolism in Wistar fatty rats. Arzneimittelforschung 1990, 40(3):263-267.
- [13]Kemnitz JW, Elson DF, Roecker EB, Baum ST, Bergman RN, Meglasson MD: Pioglitazone increases insulin sensitivity, reduces blood glucose, insulin, and lipid levels, and lowers blood pressure, in obese, insulin-resistant rhesus monkeys. Diabetes 1994, 43(2):204-211.
- [14]Hallakou S, Doare L, Foufelle F, Kergoat M, Guerre-Millo M, Berthault MF, et al.: Pioglitazone induces in vivo adipocyte differentiation in the obese Zucker fa/fa rat. Diabetes 1997, 46(9):1393-1399.
- [15]Suzuki A, Yasuno T, Kojo H, Hirosumi J, Mutoh S, Notsu Y: Alteration in expression profiles of a series of diabetes-related genes in db/db mice following treatment with thiazolidinediones. Jpn J Pharmacol 2000, 84(2):113-123.
- [16]Fujimoto M, Tsuneyama K, Fujimoto T, Selmi C, Gershwin ME, Shimada Y: Spirulina improves non-alcoholic steatohepatitis, visceral fat macrophage aggregation, and serum leptin in a mouse model of metabolic syndrome. Dig Liver Dis. 2012, 44(9):767-774.
- [17]Spencer M, Yang L, Adu A, Finlin BS, Zhu B, Shipp LR, et al.: Pioglitazone treatment reduces adipose tissue inflammation through reduction of mast cell and macrophage number and by improving vascularity. PLoS One 2014, 9(7):e102190.
- [18]Uchiyama M, Shimizu A, Masuda Y, Nagasaka S, Fukuda Y, Takahashi H: An ophthalmic solution of a peroxisome proliferator-activated receptor gamma agonist prevents corneal inflammation in a rat alkali burn model. Mol Vision. 2013, 19:2135-2150.
- [19]Jiang Y, Thakran S, Bheemreddy R, Ye EA, He H, Walker RJ, et al.: Pioglitazone normalizes insulin signaling in the diabetic rat retina through reduction in tumor necrosis factor alpha and suppressor of cytokine signaling 3. J Biol Chem 2014, 289(38):26395-26405.
- [20]Uchimura K, Nakamuta M, Enjoji M, Irie T, Sugimoto R, Muta T, et al.: Activation of retinoic X receptor and peroxisome proliferator-activated receptor-gamma inhibits nitric oxide and tumor necrosis factor-alpha production in rat Kupffer cells. Hepatology 2001, 33(1):91-99.
- [21]Majai G, Sarang Z, Csomos K, Zahuczky G, Fesus L: PPARgamma-dependent regulation of human macrophages in phagocytosis of apoptotic cells. Eur J Immunol 2007, 37(5):1343-1354.
- [22]Hasegawa H, Takano H, Zou Y, Qin Y, Hizukuri K, Odaka K, et al.: Pioglitazone, a peroxisome proliferator-activated receptor gamma activator, ameliorates experimental autoimmune myocarditis by modulating Th1/Th2 balance. J Mol Cell Cardiol 2005, 38(2):257-265.
- [23]Thorp E, Kuriakose G, Shah YM, Gonzalez FJ, Tabas I: Pioglitazone increases macrophage apoptosis and plaque necrosis in advanced atherosclerotic lesions of nondiabetic low-density lipoprotein receptor-null mice. Circulation 2007, 116(19):2182-2190.
- [24]Zhao W, Berthier CC, Lewis EE, McCune WJ, Kretzler M, Kaplan MJ: The peroxisome-proliferator activated receptor-gamma agonist pioglitazone modulates aberrant T cell responses in systemic lupus erythematosus. Clin Immunol. 2013, 149(1):119-132.
- [25]Jiang Y, Zhang Q, Steinle JJ: Intravitreal injection of IGFBP-3 restores normal insulin signaling in diabetic rat retina. PLoS One 2014, 9(4):e93788.
- [26]Walker RJ, Steinle JJ: Role of beta-adrenergic receptors in inflammatory marker expression in Muller cells. Invest Ophthalmol Vis Sci 2007, 48(11):5276-5281.
- [27]Kohler S, Thiel A: Life after the thymus: CD31+ and CD31- human naive CD4+ T-cell subsets. Blood 2009, 113(4):769-774.
- [28]Lontchi-Yimagou E, Sobngwi E, Matsha TE, Kengne AP: Diabetes mellitus and inflammation. Curr Diab Rep. 2013, 13(3):435-444.
- [29]Imai Y, Dobrian AD, Weaver JR, Butcher MJ, Cole BK, Galkina EV, et al.: Interaction between cytokines and inflammatory cells in islet dysfunction, insulin resistance and vascular disease. Diabetes Obes Metab 2013, 15(Suppl 3):117-129.
- [30]De Carvalho Vidigal F, Guedes Cocate P, Goncalves Pereira L, De Cassia Goncalves Alfenas R: The role of hyperglycemia in the induction of oxidative stress and inflammatory process. Nutr Hosp. 2012, 27(5):1391-1398.
- [31]Donath MY, Schumann DM, Faulenbach M, Ellingsgaard H, Perren A, Ehses JA: Islet inflammation in type 2 diabetes: from metabolic stress to therapy. Diabetes Care 2008, 31(Suppl 2):S161-S164.
- [32]Pereira FO, Frode TS, Medeiros YS: Evaluation of tumour necrosis factor alpha, interleukin-2 soluble receptor, nitric oxide metabolites, and lipids as inflammatory markers in type 2 diabetes mellitus. Mediators Inflamm 2006, 2006(1):39062.
- [33]Bano G: Glucose homeostasis, obesity and diabetes. Best Pract Res Clin Obstet Gynaecol. 2013, 27(5):715-726.
- [34]Shoelson SE, Lee J, Goldfine AB: Inflammation and insulin resistance. J Clin Invest. 2006, 116(7):1793-1801.
- [35]Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr: Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003, 112(12):1796-1808.
- [36]Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al.: Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003, 112(12):1821-1830.
- [37]Bouhlel MA, Derudas B, Rigamonti E, Dievart R, Brozek J, Haulon S, et al.: PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 2007, 6(2):137-143.
- [38]Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK: The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998, 391(6662):79-82.
- [39]Fujisaka S, Usui I, Bukhari A, Ikutani M, Oya T, Kanatani Y, et al.: Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 2009, 58(11):2574-2582.
- [40]Fontenot JD, Gavin MA, Rudensky AY: Foxp3 programs the development and function of CD4 + CD25 + regulatory T cells. Nat Immunol 2003, 4(4):330-336.
- [41]Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science 2003, 299(5609):1057-1061.
- [42]Khattri R, Cox T, Yasayko SA, Ramsdell F: An essential role for Scurfin in CD4+ CD25+ T regulatory cells. Nat Immunol 2003, 4(4):337-342.
- [43]Subramani PA, Reddy MC, Narala VR: The need for physiologically relevant peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligands. Endocr Metab Immune Disord Drug Targets 2013, 13(2):175-183.
- [44]Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, et al.: PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med 2013, 19(5):557-566.
- [45]Ferroni P, Della-Morte D, Pileggi A, Riondino S, Rundek T, Ricordi C, et al.: Pleiotropic effects of PPARgamma agonist on hemostatic activation in type 2 diabetes mellitus. Curr Vasc Pharmacol 2013, 11(3):338-351.
- [46]Hofmann CA, Colca JR: New oral thiazolidinedione antidiabetic agents act as insulin sensitizers. Diabetes Care 1992, 15(8):1075-1078.
- [47]Hofmann CA, Edwards CW 3rd, Hillman RM, Colca JR: Treatment of insulin-resistant mice with the oral antidiabetic agent pioglitazone: evaluation of liver GLUT2 and phosphoenolpyruvate carboxykinase expression. Endocrinology 1992, 130(2):735-740.
- [48]McNelis JC, Olefsky JM: Macrophages, immunity, and metabolic disease. Immunity 2014, 41(1):36-48.
- [49]Cipolletta D: Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential. Immunology 2014, 142(4):517-525.
- [50]Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, et al.: PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 2012, 486(7404):549-553.
- [51]Cipolletta D, Cohen P, Spiegelman BM, Benoist C, Mathis D: Appearance and disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue: age, diet, and PPARgamma effects. Proc Natl Acad Sci USA. 2015, 112(2):482-487.
- [52]Cipolletta D, Kolodin D, Benoist C, Mathis D: Tissular T(regs): a unique population of adipose-tissue-resident Foxp3+ CD4+ T cells that impacts organismal metabolism. Semin Immunol 2011, 23(6):431-437.
- [53]Deiuliis J, Shah Z, Shah N, Needleman B, Mikami D, Narula V, et al.: Visceral adipose inflammation in obesity is associated with critical alterations in tregulatory cell numbers. PLoS One 2011, 6(1):e16376.
- [54]Kraakman MJ, Murphy AJ, Jandeleit-Dahm K, Kammoun HL: Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function? Front Immunol 2014, 5:470.
- [55]Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, et al.: MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006, 116(6):1494-1505.
- [56]Nagy ZS, Czimmerer Z, Szanto A, Nagy L: Pro-inflammatory cytokines negatively regulate PPARgamma mediated gene expression in both human and murine macrophages via multiple mechanisms. Immunobiology 2013, 218(11):1336-1344.
- [57]Wohlfert EA, Nichols FC, Nevius E, Clark RB: Peroxisome proliferator-activated receptor gamma (PPARgamma) and immunoregulation: enhancement of regulatory T cells through PPARgamma-dependent and -independent mechanisms. J Immunol. 2007, 178(7):4129-4135.
- [58]Morales-Tirado V, Wichlan DG, Leimig TE, Street SE, Kasow KA, Riberdy JM: 1alpha,25-dihydroxyvitamin D3 (vitamin D3) catalyzes suppressive activity on human natural regulatory T cells, uniquely modulates cell cycle progression, and augments FOXP3. Clin Immunol. 2011, 138(2):212-221.
- [59]Kasow KA, Morales-Tirado VM, Wichlan D, Shurtleff SA, Abraham A, Persons DA, et al.: Therapeutic in vivo selection of thymic-derived natural T regulatory cells following non-myeloablative hematopoietic stem cell transplant for IPEX. Clin Immunol. 2011, 141(2):169-176.
- [60]Curat CA, Miranville A, Sengenes C, Diehl M, Tonus C, Busse R, et al.: From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes 2004, 53(5):1285-1292.
- [61]Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N, et al.: Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 2006, 281(36):26602-26614.
- [62]Haase J, Weyer U, Immig K, Kloting N, Bluher M, Eilers J, et al.: Local proliferation of macrophages in adipose tissue during obesity-induced inflammation. Diabetologia 2014, 57(3):562-571.
- [63]Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, Spinas GA, et al.: Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest. 2002, 110(6):851-860.
- [64]Wachlin G, Augstein P, Schroder D, Kuttler B, Kloting I, Heinke P, et al.: IL-1beta, IFN-gamma and TNF-alpha increase vulnerability of pancreatic beta cells to autoimmune destruction. J Autoimmun 2003, 20(4):303-312.
- [65]Severinson E, Naito T, Tokumoto H, Fukushima D, Hirano A, Hama K, et al.: Interleukin 4 (IgG1 induction factor): a multifunctional lymphokine acting also on T cells. Eur J Immunol 1987, 17(1):67-72.
- [66]Fowell DJ, Magram J, Turck CW, Killeen N, Locksley RM: Impaired Th2 subset development in the absence of CD4. Immunity 1997, 6(5):559-569.
- [67]Mosmann TR, Coffman RL: Two types of mouse helper T-cell clone Implications for immune regulation. Immunol Today 1987, 8(7–8):223-227.
- [68]Zadeh HH, Greiner DL, Wu DY, Tausche F, Goldschneider I: Abnormalities in the export and fate of recent thymic emigrants in diabetes-prone BB/W rats. Autoimmunity. 1996, 24(1):35-46.
- [69]Poussier P, Ning T, Murphy T, Dabrowski D, Ramanathan S: Impaired post-thymic development of regulatory CD4+ 25+ T cells contributes to diabetes pathogenesis in BB rats. J Immunol. 2005, 174(7):4081-4089.
- [70]Hick RW, Gruver AL, Ventevogel MS, Haynes BF, Sempowski GD: Leptin selectively augments thymopoiesis in leptin deficiency and lipopolysaccharide-induced thymic atrophy. J Immunol. 2006, 177(1):169-176.
- [71]Feinstein DL, Spagnolo A, Akar C, Weinberg G, Murphy P, Gavrilyuk V, et al.: Receptor-independent actions of PPAR thiazolidinedione agonists: is mitochondrial function the key? Biochem Pharmacol 2005, 70(2):177-188.
PDF