期刊论文详细信息
Journal of Neuroinflammation
Gliovascular and cytokine interactions modulate brain endothelial barrier in vitro
J Steven Alexander5  Alireza Minagar1  J Michael Mathis7  Anat Erdreich-Epstein2  Babette Weksler3  Ignacio A Romero3  P Olivier Couraud4  Merilyn H Jennings6  Shannon R Wells6  Walter E Cromer7  Ganta V Chaitanya6 
[1] Department of Neurology, School of Medicine, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Hwy, Shreveport, LA 71130, USA;Division of Hematology-Oncology, Departments of Pediatrics and Pathology, The Saban Research Institute at Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, 4650 Sunset Boulevard, Los Angeles, California 90027, USA;Department of Biological Sciences, The Open University, Milton Keynes, UK;Univ Paris Descartes, Paris, France;Department of Medicine, Weill Medical College, 1300 York Ave, New York, NY-10065, USA;Department of Molecular and Cellular Physiology, School of Graduate Studies, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Hwy, Shreveport, LA 71130, USA;Cell Biology and Anatomy, School of Graduate Studies, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Hwy, Shreveport, LA 71130, USA
关键词: Mono-Culture;    Co-culture;    Astrocytes;    Brain endothelium;    IFN-γ;    IL-1β;    TNF-α;   
Others  :  1212996
DOI  :  10.1186/1742-2094-8-162
 received in 2011-05-10, accepted in 2011-11-23,  发布年份 2011
PDF
【 摘 要 】

The glio-vascular unit (G-unit) plays a prominent role in maintaining homeostasis of the blood-brain barrier (BBB) and disturbances in cells forming this unit may seriously dysregulate BBB. The direct and indirect effects of cytokines on cellular components of the BBB are not yet unclear. The present study compares the effects of cytokines and cytokine-treated astrocytes on brain endothelial barrier. 3-dimensional transwell co-cultures of brain endothelium and related-barrier forming cells with astrocytes were used to investigate gliovascular barrier responses to cytokines during pathological stresses. Gliovascular barrier was measured using trans-endothelial electrical resistance (TEER), a sensitive index of in vitro barrier integrity. We found that neither TNF-α, IL-1β or IFN-γ directly reduced barrier in human or mouse brain endothelial cells or ECV-304 barrier (independent of cell viability/metabolism), but found that astrocyte exposure to cytokines in co-culture significantly reduced endothelial (and ECV-304) barrier. These results indicate that the barrier established by human and mouse brain endothelial cells (and other cells) may respond positively to cytokines alone, but that during pathological conditions, cytokines dysregulate the barrier forming cells indirectly through astrocyte activation involving reorganization of junctions, matrix, focal adhesion or release of barrier modulating factors (e.g. oxidants, MMPs).

【 授权许可】

   
2011 Chaitanya et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150614112544653.pdf 1065KB PDF download
Figure 6. 53KB Image download
Figure 5. 52KB Image download
Figure 4. 75KB Image download
Figure 3. 33KB Image download
Figure 2. 49KB Image download
Figure 1. 85KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Stolp HB, Dziegielewska KM: Review: Role of developmental inflammation and blood-brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases. Neuropathol Appl Neurobiol 2009, 35:132-146.
  • [2]Weiss N, Miller F, Cazaubon S, Couraud PO: The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 2009, 1788:842-857.
  • [3]Bell RD, Zlokovic BV: Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer's disease. Acta Neuropathol 2009, 118:103-113.
  • [4]del Zoppo GJ: Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience 2009, 158:972-982.
  • [5]Ivey NS, Maclean AG, Lackner AA: Acquired immunodeficiency syndrome and the blood-brain barrier. J Neurovirol 2009, 15:111-122.
  • [6]Keep RF, Xiang J, Ennis SR, Andjelkovic A, Hua Y, Xi G, Hoff JT: Blood-brain barrier function in intracerebral hemorrhage. Acta Neurochir Suppl 2008, 105:73-77.
  • [7]Lee J, Lund-Smith C, Borboa A, Gonzalez AM, Baird A, Eliceiri BP: Glioma-induced remodeling of the neurovascular unit. Brain Res 2009, 1288:125-134.
  • [8]Minagar A, Alexander JS: Blood-brain barrier disruption in multiple sclerosis. Mult Scler 2003, 9:540-549.
  • [9]Minagar A, Jy W, Jimenez JJ, Alexander JS: Multiple sclerosis as a vascular disease. Neurol Res 2006, 28:230-235.
  • [10]Simka M: Blood brain barrier compromise with endothelial inflammation may lead to autoimmune loss of myelin during multiple sclerosis. Curr Neurovasc Res 2009, 6:132-139.
  • [11]Abbott NJ: Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol 2000, 20:131-147.
  • [12]Alvarez JI, Teale JM: Breakdown of the blood brain barrier and blood-cerebrospinal fluid barrier is associated with differential leukocyte migration in distinct compartments of the CNS during the course of murine NCC. J Neuroimmunol 2006, 173:45-55.
  • [13]Banks WA, Erickson MA: The blood-brain barrier and immune function and dysfunction. Neurobiol Dis 2009.
  • [14]Blamire AM, Anthony DC, Rajagopalan B, Sibson NR, Perry VH, Styles P: Interleukin-1beta -induced changes in blood-brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: a magnetic resonance study. J Neurosci 2000, 20:8153-8159.
  • [15]Paul R, Koedel U, Winkler F, Kieseier BC, Fontana A, Kopf M, Hartung HP, Pfister HW: Lack of IL-6 augments inflammatory response but decreases vascular permeability in bacterial meningitis. Brain 2003, 126:1873-1882.
  • [16]Suidan GL, Mcdole JR, Chen Y, Pirko I, Johnson AJ: Induction of blood brain barrier tight junction protein alterations by CD8 T cells. PLoS One 2008, 3:e3037.
  • [17]Wilson CM, Gaber MW, Sabek OM, Zawaski JA, Merchant TE: Radiation-induced astrogliosis and blood-brain barrier damage can be abrogated using anti-TNF treatment. Int J Radiat Oncol Biol Phys 2009, 74:934-941.
  • [18]Yang GY, Gong C, Qin Z, Liu XH, Lorris BA: Tumor necrosis factor alpha expression produces increased blood-brain barrier permeability following temporary focal cerebral ischemia in mice. Brain Res Mol Brain Res 1999, 69:135-143.
  • [19]Abbott NJ: Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 2002, 200:629-638.
  • [20]Siddharthan V, Kim YV, Liu S, Kim KS: Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res 2007, 1147:39-50.
  • [21]Willis CL, Nolan CC, Reith SN, Lister T, Prior MJ, Guerin CJ, Mavroudis G, Ray DE: Focal astrocyte loss is followed by microvascular damage, with subsequent repair of the blood-brain barrier in the apparent absence of direct astrocytic contact. Glia 2004, 45:325-337.
  • [22]Bouzier-Sore AK, Serres S, Canioni P, Merle M: Lactate involvement in neuron-glia metabolic interaction: (13)C-NMR spectroscopy contribution. Biochimie 2003, 85:841-848.
  • [23]Chih CP, Roberts EL Jr: Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis. J Cereb Blood Flow Metab 2003, 23:1263-1281.
  • [24]Jiang M, Chen G: Ca2+ regulation of dynamin-independent endocytosis in cortical astrocytes. J Neurosci 2009, 29:8063-8074.
  • [25]Magistretti PJ: Neuron-glia metabolic coupling and plasticity. J Exp Biol 2006, 209:2304-2311.
  • [26]Mangia S, Simpson IA, Vannucci SJ, Carruthers A: The in vivo neuron-to-astrocyte lactate shuttle in human brain: evidence from modeling of measured lactate levels during visual stimulation. J Neurochem 2009, 109(Suppl 1):55-62.
  • [27]Occhipinti R, Somersalo E, Calvetti D: Astrocytes as the glucose shunt for glutamatergic neurons at high activity: an in silico study. J Neurophysiol 2009, 101:2528-2538.
  • [28]Postnov DE, Koreshkov RN, Brazhe NA, Brazhe AR, Sosnovtseva OV: Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J Biol Phys 2009.
  • [29]Rossi D, Volterra A: Astrocytic dysfunction: Insights on the role in neurodegeneration. Brain Res Bull 2009.
  • [30]Fischer S, Wobben M, Kleinstuck J, Renz D, Schaper W: Effect of astroglial cells on hypoxia-induced permeability in PBMEC cells. Am J Physiol Cell Physiol 2000, 279:C935-C944.
  • [31]Gelot A, Villapol S, Billette d, Renolleau S, Charriaut-Marlangue C: Astrocytic demise in the developing rat and human brain after hypoxic-ischemic damage. Dev Neurosci 2009, 31:459-470.
  • [32]Marchetti B: Cross-talk signals in the CNS: role of neurotrophic and hormonal factors, adhesion molecules and intercellular signaling agents in luteinizing hormone-releasing hormone (LHRH)-astroglial interactive network. Front Biosci 1997, 2:d88-125.
  • [33]Ito U, Hakamata Y, Kawakami E, Oyanagi K: Degeneration of astrocytic processes and their mitochondria in cerebral cortical regions peripheral to the cortical infarction: heterogeneity of their disintegration is closely associated with disseminated selective neuronal necrosis and maturation of injury. Stroke 2009, 40:2173-2181.
  • [34]Takano T, Oberheim N, Cotrina ML, Nedergaard M: Astrocytes and ischemic injury. Stroke 2009, 40:S8-12.
  • [35]Trendelenburg G, Dirnagl U: Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia 2005, 50:307-320.
  • [36]Sandhu JK, Gardaneh M, Iwasiow R, Lanthier P, Gangaraju S, Ribecco-Lutkiewicz M, Tremblay R, Kiuchi K, Sikorska M: Astrocyte-secreted GDNF and glutathione antioxidant system protect neurons against 6OHDA cytotoxicity. Neurobiol Dis 2009, 33:405-414.
  • [37]Lin CH, Cheng FC, Lu YZ, Chu LF, Wang CH, Hsueh CM: Protection of ischemic brain cells is dependent on astrocyte-derived growth factors and their receptors. Exp Neurol 2006, 201:225-233.
  • [38]Rudge JS, Alderson RF, Pasnikowski E, McClain J, Ip NY, Lindsay RM: Expression of Ciliary Neurotrophic Factor and the Neurotrophins-Nerve Growth Factor, Brain-Derived Neurotrophic Factor and Neurotrophin 3-in Cultured Rat Hippocampal Astrocytes. Eur J Neurosci 1992, 4:459-471.
  • [39]Knuckey NW, Finch P, Palm DE, Primiano MJ, Johanson CE, Flanders KC, Thompson NL: Differential neuronal and astrocytic expression of transforming growth factor beta isoforms in rat hippocampus following transient forebrain ischemia. Brain Res Mol Brain Res 1996, 40:1-14.
  • [40]Schmid-Brunclik N, Burgi-Taboada C, Antoniou X, Gassmann M, Ogunshola OO: Astrocyte responses to injury: VEGF simultaneously modulates cell death and proliferation. Am J Physiol Regul Integr Comp Physiol 2008, 295:R864-R873.
  • [41]Yu AC, Lau LT: Expression of interleukin-1 alpha, tumor necrosis factor alpha and interleukin-6 genes in astrocytes under ischemic injury. Neurochem Int 2000, 36:369-377.
  • [42]Haseloff RF, Blasig IE, Bauer HC, Bauer H: In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol 2005, 25:25-39.
  • [43]Carames B, Lopez-Armada MJ, Cillero-Pastor B, Lires-Dean M, Vaamonde C, Galdo F, Blanco FJ: Differential effects of tumor necrosis factor-alpha and interleukin-1beta on cell death in human articular chondrocytes. Osteoarthritis Cartilage 2008, 16:715-722.
  • [44]Dopp JM, kenzie-Graham A, Otero GC, Merrill JE: Differential expression, cytokine modulation, and specific functions of type-1 and type-2 tumor necrosis factor receptors in rat glia. J Neuroimmunol 1997, 75:104-112.
  • [45]Ishihara K, Hirano T: Molecular basis of the cell specificity of cytokine action. Biochim Biophys Acta 2002, 1592:281-296.
  • [46]Yu G, Fahnestock M: Differential expression of nerve growth factor transcripts in glia and neurons and their regulation by transforming growth factor-beta1. Brain Res Mol Brain Res 2002, 105:115-125.
  • [47]Capaldo CT, Nusrat A: Cytokine regulation of tight junctions. Biochim Biophys Acta 2009, 1788:864-871.
  • [48]Marano CW, Laughlin KV, Russo LM, Peralta SA, Mullin JM: Long-term effects of tumor necrosis factor on LLC-PK1 transepithelial resistance. J Cell Physiol 1993, 157:519-527.
  • [49]Peralta SA, Mullin JM, Knudsen KA, Marano CW: Tissue remodeling during tumor necrosis factor-induced apoptosis in LLC-PK1 renal epithelial cells. Am J Physiol 1996, 270:F869-F879.
  • [50]Bogatcheva NV, Verin AD: The role of cytoskeleton in the regulation of vascular endothelial barrier function. Microvasc Res 2008, 76:202-207.
  • [51]Brown RC, Mark KS, Egleton RD, Huber JD, Burroughs AR, Davis TP: Protection against hypoxia-induced increase in blood-brain barrier permeability: role of tight junction proteins and NFkappaB. J Cell Sci 2003, 116:693-700.
  • [52]Oshima T, Laroux FS, Coe LL, Morise Z, Kawachi S, Bauer P, Grisham MB, Specian RD, Carter P, Jennings S, et al.: Interferon-gamma and interleukin-10 reciprocally regulate endothelial junction integrity and barrier function. Microvasc Res 2001, 61:130-143.
  • [53]Petrache I, Verin AD, Crow MT, Birukova A, Liu F, Garcia JG: Differential effect of MLC kinase in TNF-alpha-induced endothelial cell apoptosis and barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2001, 280:L1168-L1178.
  • [54]Polavarapu R, Gongora MC, Winkles JA, Yepes M: Tumor necrosis factor-like weak inducer of apoptosis increases the permeability of the neurovascular unit through nuclear factor-kappa B pathway activation. J Neurosci 2005, 25:10094-10100.
  • [55]Lu DY, Yu WH, Yeh WL, Tang CH, Leung YM, Wong KL, Chen YF, Lai CH, Fu WM: Hypoxia-induced matrix metalloproteinase-13 expression in astrocytes enhances permeability of brain endothelial cells. J Cell Physiol 2009, 220:163-173.
  • [56]Tejima E, Zhao BQ, Tsuji K, Rosell A, van LK, Gonzalez RG, Montaner J, Wang X, Lo EH: Astrocytic induction of matrix metalloproteinase-9 and edema in brain hemorrhage. J Cereb Blood Flow Metab 2007, 27:460-468.
  • [57]Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA: Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 2007, 27:697-709.
  • [58]Tang J, Liu J, Zhou C, Alexander JS, Nanda A, Granger DN, Zhang JH: Mmp-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J Cereb Blood Flow Metab 2004, 24:1133-1145.
  • [59]Cucullo L, Couraud PO, Weksler B, Romero IA, Hossain M, Rapp E, Janigro D: Immortalized human brain endothelial cells and flow-based vascular modeling: a marriage of convenience for rational neurovascular studies. J Cereb Blood Flow Metab 2008, 28:312-328.
  • [60]Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, et al.: Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 2005, 19:1872-1874.
  • [61]Suda K, Rothen-Rutishauser B, Gunthert M, Wunderli-Allenspach H: Phenotypic characterization of human umbilical vein endothelial (ECV304) and urinary carcinoma (T24) cells: endothelial versus epithelial features. In Vitro Cell Dev Biol Anim 2001, 37:505-514.
  • [62]Abbott NJ, Ronnback L, Hansson E: Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006, 7:41-53.
  • [63]Paulson OB, Hasselbalch SG, Rostrup E, Knudsen GM, Pelligrino D: Cerebral blood flow response to functional activation. J Cereb Blood Flow Metab 2009.
  • [64]Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M: Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 2006, 9:260-267.
  • [65]Abbott NJ: Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 2005, 25:5-23.
  • [66]Stamatovic SM, Keep RF, Andjelkovic AV: Brain endothelial cell-cell junctions: how to "open" the blood brain barrier. Curr Neuropharmacol 2008, 6:179-192.
  • [67]Huynh HK, Dorovini-Zis K: Effects of interferon-gamma on primary cultures of human brain microvessel endothelial cells. Am J Pathol 1993, 142:1265-1278.
  • [68]Minagar A, Long A, Ma T, Jackson TH, Kelley RE, Ostanin DV, Sasaki M, Warren AC, Jawahar A, Cappell B, et al.: Interferon (IFN)-beta 1a and IFN-beta 1b block IFN-gamma-induced disintegration of endothelial junction integrity and barrier. Endothelium 2003, 10:299-307.
  • [69]Wong D, Dorovini-Zis K, Vincent SR: Cytokines, nitric oxide, and cGMP modulate the permeability of an in vitro model of the human blood-brain barrier. Exp Neurol 2004, 190:446-455.
  • [70]Hawkins BT, Davis TP: The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005, 57:173-185.
  • [71]Wolburg H, Lippoldt A: Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol 2002, 38:323-337.
  • [72]Lu DY, Yu WH, Yeh WL, Tang CH, Leung YM, Wong KL, Chen YF, Lai CH, Fu WM: Hypoxia-induced matrix metalloproteinase-13 expression in astrocytes enhances permeability of brain endothelial cells. J Cell Physiol 2009, 220:163-173.
  • [73]Tejima E, Zhao BQ, Tsuji K, Rosell A, van LK, Gonzalez RG, Montaner J, Wang X, Lo EH: Astrocytic induction of matrix metalloproteinase-9 and edema in brain hemorrhage. J Cereb Blood Flow Metab 2007, 27:460-468.
  • [74]Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA: Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 2007, 27:697-709.
  • [75]Argaw AT, Zhang Y, Snyder BJ, Zhao ML, Kopp N, Lee SC, Raine CS, Brosnan CF, John GR: IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J Immunol 2006, 177:5574-5584.
  • [76]Alvarado J, del C Jr, Thomas LE: Modulation of membrane type 1 matrix metalloproteinase by LPS and gamma interferon bound to extracellular matrix in intestinal crypt cells. Cytokine 2008, 41:155-161.
  • [77]Lambertsen KL, Gregersen R, Meldgaard M, Clausen BH, Heibol EK, Ladeby R, Knudsen J, Frandsen A, Owens T, Finsen B: A role for interferon-gamma in focal cerebral ischemia in mice. J Neuropathol Exp Neurol 2004, 63:942-955.
  • [78]Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, Giese T, Veltkamp R: Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 2009, 15:192-199.
  • [79]Richter K, Hausmann J, Staeheli P: Interferon-gamma prevents death of bystander neurons during CD8 T cell responses in the brain. Am J Pathol 2009, 174:1799-1807.
  • [80]Imai F, Suzuki H, Oda J, Ninomiya T, Ono K, Sano H, Sawada M: Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab 2007, 27:488-500.
  • [81]Anthony D, Dempster R, Fearn S, Clements J, Wells G, Perry VH, Walker K: CXC chemokines generate age-related increases in neutrophil-mediated brain inflammation and blood-brain barrier breakdown. Curr Biol 1998, 8:923-926.
  • [82]Campbell SJ, Wilcockson DC, Butchart AG, Perry VH, Anthony DC: Altered chemokine expression in the spinal cord and brain contributes to differential interleukin-1beta-induced neutrophil recruitment. J Neurochem 2002, 83:432-441.
  文献评价指标  
  下载次数:37次 浏览次数:3次