期刊论文详细信息
Journal of Hematology & Oncology
HDM2 antagonist MI-219 (spiro-oxindole), but not Nutlin-3 (cis-imidazoline), regulates p53 through enhanced HDM2 autoubiquitination and degradation in human malignant B-cell lymphomas
Ayad M Al-Katib3  Ramzi M Mohammad1  Judith Abrams2  Aisha Siddiqi1  Angelika M Burger4  Angela M Sosin1 
[1] Department of Oncology, Barbara Ann Karmanos Cancer Institute (KCI), Detroit, MI, 48201, USA;Biostatistics Core Facility (KCI), Detroit, USA;Division of Hematology and Oncology Department of Internal Medicine, Wayne State University School of Medicine, 540 E. Canfield, 8229 Scott Hall, Detroit, MI, 48201, USA;Department of Pharmacology, Wayne State University School of Medicine (WSU-SOM), Detroit, MI, 48201, USA
关键词: Autoubiquitination;    Small-molecule inhibitor;    B-cell lymphoma;    Nutlin-3;    MI-219;    Apoptosis;    p53;    HDM2;   
Others  :  822133
DOI  :  10.1186/1756-8722-5-57
 received in 2012-06-22, accepted in 2012-09-01,  发布年份 2012
PDF
【 摘 要 】

Background

Lymphomas frequently retain wild-type (wt) p53 function but overexpress HDM2, thereby compromising p53 activity. Therefore, lymphoma is a suitable model for studying the therapeutic value of disrupting the HDM2-p53 interaction by small-molecule inhibitors (SMIs). HDM2 have been developed and are under various stages of preclinical and clinical investigation. Previously, we examined the anti-lymphoma activity of MI-319, the laboratory grade of a new class of HDM2 SMI, the spiro-oxindole, in follicular lymphoma. Since then, MI-219, the clinical grade has become readily available. This study further examines the preclinical effects and mechanisms of MI-219 in a panel of human lymphoma cell lines as well as a cohort of patient-derived B-lymphcytes for its potential clinical use.

Results

Preclinical assessment of MI-219 was evaluated by means of an in vitro and ex vivo approach and compared to Nutlin-3, the gold standard. Characterization of p53 activity and stability were assessed by quantitative PCR, Western blot, and immunoprecipitation. Biological outcome was measured using Trypan blue exclusion assay, Annexin V/PI, PARP and caspase-3 cleavage. Surprisingly, the overall biological effects of Nutlin-3 were more delayed (48 h) while MI-219 triggered an earlier response (12-24 h), predominantly in the form of apoptotic cell death. Using a cell free autoubiquitination assay, neither agent interfered with HDM2 E3 ligase function. MI-219 was more effective in upregulating wt-p53 stabilization compared to Nutlin-3. MI-219, but not Nutlin-3, enhanced the autoubiquitination and degradation of HDM2.

Conclusions

Our data reveals unexpected differences between MI-219 and the well-studied Nutlin-3 in lymphoma cell lines and patient samples. We suggest a novel mechanism for MI-219 that alters the functional activity of HDM2 through enhanced autoubiquitination and degradation. Additionally, this mechanism appears to correspond to biological outcome. Our results provide evidence that different classes of HDM2 SMIs elicit molecular events that extend beyond HDM2-p53 dissociation which may be of biological and potentially therapeutic importance.

【 授权许可】

   
2012 Sosin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712093708701.pdf 3789KB PDF download
Figure 9. 56KB Image download
Figure 8. 58KB Image download
Figure 7. 75KB Image download
Figure 6. 89KB Image download
Figure 5. 77KB Image download
Figure 4. 53KB Image download
Figure 3. 109KB Image download
Figure 2. 102KB Image download
Figure 1. 43KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ: Cancer statistics, 2007. CA Cancer J Clin 2007, 57:43-66.
  • [2]Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Cancer J Clin 2012, 62:10-29.
  • [3]Collavin L, Lunardi A, Del Sal G: p53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death Differ 2010, 17:901-911.
  • [4]Prives C, Hall PA: The p53 pathway. J Pathol 1999, 187:112-126.
  • [5]Oren M: Regulation of the p53 tumor suppressor protein. J Biol Chem 1999, 274:36031-36034.
  • [6]Harris SL, Levine AJ: The p53 pathway: positive and negative feedback loops. Oncogene 2005, 24:2899-2908.
  • [7]Hollstein M, Sidransky D, Vogelstein B, Harris CC: p53 mutations in human cancers. Science 1991, 253:49-53.
  • [8]Koduru PR, Raju K, Vadmal V, Menezes G, Shah S, Susin M, Kolitz J, Broome JD: Correlation between mutation in P53, p53 expression, cytogenetics, histologic type, and survival in patients with B-cell non-Hodgkin's lymphoma. Blood 1997, 90:4078-4091.
  • [9]Keshelava N, Zuo JJ, Chen P, Waidyaratne SN, Luna MC, Gomer CJ, Triche TJ, Reynolds CP: Loss of p53 function confers high-level multidrug resistance in neuroblastoma cell lines. Cancer Res 2001, 61:6185-6193.
  • [10]Buttitta F, Marchetti A, Gadducci A, Pellegrini S, Morganti M, Carnicelli V, Cosio S, Gagetti O, Genazzani AR, Bevilacqua G: p53 alterations are predictive of chemoresistance and aggressiveness in ovarian carcinomas: a molecular and immunohistochemical study. Br J Cancer 1997, 75:230-235.
  • [11]Harada T, Ogura S, Yamazaki K, Kinoshita I, Itoh T, Isobe H, Yamashiro K, Dosaka-Akita H, Nishimura M: Predictive value of expression of P53, Bcl-2 and lung resistance-related protein for response to chemotherapy in non-small cell lung cancers. Cancer Sci 2003, 94:394-399.
  • [12]Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B: Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 1993, 362:857-860.
  • [13]Haupt Y, Maya R, Kazaz A, Oren M: Mdm2 promotes the rapid degradation of p53. Nature 1997, 387:296-299.
  • [14]Momand J, Wu HH, Dasgupta G: MDM2–master regulator of the p53 tumor suppressor protein. Gene 2000, 242:15-29.
  • [15]Iwakuma T, Lozano G: MDM2, an introduction. Mol Cancer Res 2003, 1:993-1000.
  • [16]Honda R, Yasuda H: Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 2000, 19:1473-1476.
  • [17]Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM: Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 2000, 275:8945-8951.
  • [18]Stommel JM, Wahl GM: A new twist in the feedback loop: stress-activated MDM2 destabilization is required for p53 activation. Cell Cycle 2005, 4:411-417.
  • [19]Stommel JM, Wahl GM: Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J 2004, 23:1547-1556.
  • [20]Watanabe T, Hotta T, Ichikawa A, Kinoshita T, Nagai H, Uchida T, Murate T, Saito H: The MDM2 oncogene overexpression in chronic lymphocytic leukemia and low-grade lymphoma of B-cell origin. Blood 1994, 84:3158-3165.
  • [21]Chilosi M, Doglioni C, Menestrina F, Montagna L, Rigo A, Lestani M, Barbareschi M, Scarpa A, Mariuzzi GM, Pizzolo G: Abnormal expression of the p53-binding protein MDM2 in Hodgkin's disease. Blood 1994, 84:4295-4300.
  • [22]Zhang Wang H: MDM2 oncogene as a novel target for human cancer therapy. Curr Pharm Des 2000, 6:393-416.
  • [23]Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007, 28:622-629.
  • [24]Mitani N, Niwa Y, Okamoto Y: Surveyor nuclease-based detection of p53 gene mutations in haematological malignancy. Ann Clin Biochem 2007, 44:557-559.
  • [25]Kojima K, Burks JK, Arts J, Andreeff M: The novel tryptamine derivative JNJ-26854165 induces wild-type p53- and E2F1-mediated apoptosis in acute myeloid and lymphoid leukemias. Mol Cancer Ther 2010, 9:2545-2557.
  • [26]Mohammad RM, Wu J, Azmi AS, Aboukameel A, Sosin A, Wu S, Yang D, Wang S, Al-Katib AM: An MDM2 antagonist (MI-319) restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals. Mol Cancer 2009, 8:115. BioMed Central Full Text
  • [27]Wu X, Bayle JH, Olson D, Levine AJ: The p53-mdm-2 autoregulatory feedback loop. Genes Dev 1993, 7:1126-1132.
  • [28]Vogelstein B, Lane D, Levine AJ: Surfing the p53 network. Nature 2000, 408:307-310.
  • [29]Chene P: Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer 2003, 3:102-109.
  • [30]Vousden KH, Lu X: Live or let die: the cell's response to p53. Nat Rev Cancer 2002, 2:594-604.
  • [31]Shangary S, Wang S: Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 2009, 49:223-241.
  • [32]Tabernero J, Dirix L, Schoffski P, Cervantes A, Lopez-Martin JA, Capdevila J, van Beijsterveldt L, Platero S, Hall B, Yuan Z, et al.: A phase I first-in-human pharmacokinetic and pharmacodynamic study of serdemetan in patients with advanced solid tumors. Clin Cancer Res 2011, 17:6313-6321.
  • [33]Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J, et al.: Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci U S A 2008, 105:3933-3938.
  • [34]Kitagaki J, Agama KK, Pommier Y, Yang Y, Weissman AM: Targeting tumor cells expressing p53 with a water-soluble inhibitor of Hdm2. Mol Cancer Ther 2008, 7:2445-2454.
  • [35]Dias SS, Hogan C, Ochocka AM, Meek DW: Polo-like kinase-1 phosphorylates MDM2 at Ser260 and stimulates MDM2-mediated p53 turnover. FEBS Lett 2009, 583:3543-3548.
  • [36]Ashcroft M, Ludwig RL, Woods DB, Copeland TD, Weber HO, MacRae EJ, Vousden KH: Phosphorylation of HDM2 by Akt. Oncogene 2002, 21:1955-1962.
  • [37]Azmi AS, Beck FW, Sarkar FH, Mohammad RM: Network perspectives on HDM2 inhibitor chemotherapy combinations. Curr Pharm Des 2011, 17:640-652.
  • [38]Moll UM, Petrenko O: The MDM2-p53 interaction. Mol Cancer Res 2003, 1:1001-1008.
  • [39]Poyurovsky MV, Katz C, Laptenko O, Beckerman R, Lokshin M, Ahn J, Byeon IJ, Gabizon R, Mattia M, Zupnick A, et al.: The C terminus of p53 binds the N-terminal domain of MDM2. Nat Struct Mol Biol 2010, 17:982-989.
  • [40]Azmi AS, Philip PA, Aboukameel A, Wang Z, Banerjee S, Zafar SF, Goustin AS, Almhanna K, Yang D, Sarkar FH, Mohammad RM: Reactivation of p53 by novel MDM2 inhibitors: implications for pancreatic cancer therapy. Curr Cancer Drug Targets 2010, 10:319-331.
  • [41]Bixby D, Kujawski L, Wang S, Malek SN: The pre-clinical development of MDM2 inhibitors in chronic lymphocytic leukemia uncovers a central role for p53 status in sensitivity to MDM2 inhibitor-mediated apoptosis. Cell Cycle 2008, 7:971-979.
  • [42]Coll-Mulet L, Iglesias-Serret D, Santidrian AF, Cosialls AM, de Frias M, Castano E, Campas C, Barragan M, de Sevilla AF, Domingo A, et al.: MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells. Blood 2006, 107:4109-4114.
  • [43]Stuhmer T, Chatterjee M, Hildebrandt M, Herrmann P, Gollasch H, Gerecke C, Theurich S, Cigliano L, Manz RA, Daniel PT, et al.: Nongenotoxic activation of the p53 pathway as a therapeutic strategy for multiple myeloma. Blood 2005, 106:3609-3617.
  • [44]Kojima K, Konopleva M, Samudio IJ, Shikami M, Cabreira-Hansen M, McQueen T, Ruvolo V, Tsao T, Zeng Z, Vassilev LT, Andreeff M: MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 2005, 106:3150-3159.
  • [45]Johnson GG, Sherrington PD, Carter A, Lin K, Liloglou T, Field JK, Pettitt AR: A novel type of p53 pathway dysfunction in chronic lymphocytic leukemia resulting from two interacting single nucleotide polymorphisms within the p21 gene. Cancer Res 2009, 69:5210-5217.
  • [46]Pekova S, Cmejla R, Smolej L, Kozak T, Spacek M, Prucha M: Identification of a novel, transactivation-defective splicing variant of p53 gene in patients with chronic lymphocytic leukemia. Leuk Res 2008, 32:395-400.
  • [47]Zauli G, di Iasio MG, Secchiero P: Dal Bo M, Marconi D, Bomben R, Del Poeta G, Gattei V: Exposure of B cell chronic lymphocytic leukemia (B-CLL) cells to nutlin-3 induces a characteristic gene expression profile, which correlates with nutlin-3-mediated cytotoxicity. Curr Cancer Drug Targets 2009, 9:510-518.
  • [48]Dai MS, Shi D, Jin Y, Sun XX, Zhang Y, Grossman SR, Lu H: Regulation of the MDM2-p53 pathway by ribosomal protein L11 involves a post-ubiquitination mechanism. J Biol Chem 2006, 281:24304-24313.
  • [49]Lee MH, Lozano G: Regulation of the p53-MDM2 pathway by 14-3-3 sigma and other proteins. Semin Cancer Biol 2006, 16:225-234.
  • [50]Yan J, Zhang D, Di Y, Shi H, Rao H, Huo K: A newly identified Pirh2 substrate SCYL1-BP1 can bind to MDM2 and accelerate MDM2 self-ubiquitination. FEBS Lett 2010, 584:3275-3278.
  • [51]Ochocka AM, Kampanis P, Nicol S, Allende-Vega N, Cox M, Marcar L, Milne D, Fuller-Pace F, Meek D: FKBP25, a novel regulator of the p53 pathway, induces the degradation of MDM2 and activation of p53. FEBS Lett 2009, 583:621-626.
  • [52]Hu R, Peng G, Dai H, Breuer EK, Stemke-Hale K, Li K, Gonzalez-Angulo AM, Mills GB, Lin SY: ZNF668 functions as a tumor suppressor by regulating p53 stability and function in breast cancer. Cancer Res 2011, 71:6524-6534.
  • [53]Zhao BX, Chen HZ, Lei NZ, Li GD, Zhao WX, Zhan YY, Liu B, Lin SC, Wu Q: p53 mediates the negative regulation of MDM2 by orphan receptor TR3. EMBO J 2006, 25:5703-5715.
  • [54]Song MS, Song SJ, Kim SY, Oh HJ, Lim DS: The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex. EMBO J 2008, 27:1863-1874.
  • [55]Gopal YN, Chanchorn E, Van Dyke MW: Parthenolide promotes the ubiquitination of MDM2 and activates p53 cellular functions. Mol Cancer Ther 2009, 8:552-562.
  • [56]Zhang X, Gu L, Li J, Shah N, He J, Yang L, Hu Q, Zhou M: Degradation of MDM2 by the interaction between berberine and DAXX leads to potent apoptosis in MDM2-overexpressing cancer cells. Cancer Res 2010, 70:9895-9904.
  • [57]Mohammad RM, Mohamed AN, Smith MR: Jawadi NS, al-Katib A: A unique EBV-negative low-grade lymphoma line (WSU-FSCCL) exhibiting both t(14;18) and t(8;11). Cancer Genet Cytogenet 1993, 70:62-67.
  • [58]Al-Katib AM, Smith MR, Kamanda WS, Pettit GR, Hamdan M, Mohamed AN, Chelladurai B, Mohammad RM: Bryostatin 1 down-regulates mdr1 and potentiates vincristine cytotoxicity in diffuse large cell lymphoma xenografts. Clin Cancer Res 1998, 4:1305-1314.
  • [59]Ding K, Lu Y, Nikolovska-Coleska Z, Wang G, Qiu S, Shangary S, Gao W, Qin D, Stuckey J, Krajewski K, et al.: Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. J Med Chem 2006, 49:3432-3435.
  • [60]Ding K, Lu Y, Nikolovska-Coleska Z, Qiu S, Ding Y, Gao W, Stuckey J, Krajewski K, Roller PP, Tomita Y, et al.: Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc 2005, 127:10130-10131.
  • [61]Saddler C, Ouillette P, Kujawski L, Shangary S, Talpaz M, Kaminski M, Erba H, Shedden K, Wang S, Malek SN: Comprehensive biomarker and genomic analysis identifies p53 status as the major determinant of response to MDM2 inhibitors in chronic lymphocytic leukemia. Blood 2008, 111:1584-1593.
  • [62]Hainaut P, Hollstein M: p53 and human cancer: the first ten thousand mutations. Adv Cancer Res 2000, 77:81-137.
  • [63]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25:402-408.
  文献评价指标  
  下载次数:96次 浏览次数:17次