EvoDevo | |
Non-canonical Notch signaling represents an ancestral mechanism to regulate neural differentiation | |
Mark Q Martindale2  Michael J Layden1  | |
[1] Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA;Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA | |
关键词: Evolution; Cellular differentiation; Nematostella vectensis; Nvnotch; Notch; | |
Others : 1093410 DOI : 10.1186/2041-9139-5-30 |
|
received in 2014-05-27, accepted in 2014-08-12, 发布年份 2014 | |
【 摘 要 】
Background
Cellular differentiation is a critical process during development of multicellular animals that must be tightly controlled in order to avoid precocious differentiation or failed generation of differentiated cell types. Research in flies, vertebrates, and nematodes has led to the identification of a conserved role for Notch signaling as a mechanism to regulate cellular differentiation regardless of tissue/cell type. Notch signaling can occur through a canonical pathway that results in the activation of hes gene expression by a complex consisting of the Notch intracellular domain, SuH, and the Mastermind co-activator. Alternatively, Notch signaling can occur via a non-canonical mechanism that does not require SuH or activation of hes gene expression. Regardless of which mechanism is being used, high Notch activity generally inhibits further differentiation, while low Notch activity promotes differentiation. Flies, vertebrates, and nematodes are all bilaterians, and it is therefore unclear if Notch regulation of differentiation is a bilaterian innovation, or if it represents a more ancient mechanism in animals.
Results
To reconstruct the ancestral function of Notch signaling we investigate Notch function in a non-bilaterian animal, the sea anemone Nematostella vectensis (Cnidaria). Morpholino or pharmacological knockdown of Nvnotch causes increased expression of the neural differentiation gene NvashA. Conversely, overactivation of Notch activity resulting from overexpression of the Nvnotch intracellular domain or by overexpression of the Notch ligand Nvdelta suppresses NvashA. We also knocked down or overactivated components of the canonical Notch signaling pathway. We disrupted NvsuH with morpholino or by overexpressing a dominant negative NvsuH construct. We saw no change in expression levels for Nvhes genes or NvashA. Overexpression of Nvhes genes did not alter NvashA expression levels. Lastly, we tested additional markers associated with neuronal differentiation and observed that non-canonical Notch signaling broadly suppresses neural differentiation in Nematostella.
Conclusions
We conclude that one ancestral role for Notch in metazoans was to regulate neural differentiation. Remarkably, we found no evidence for a functional canonical Notch pathway during Nematostella embryogenesis, suggesting that the non-canonical hes-independent Notch signaling mechanism may represent an ancestral Notch signaling pathway.
【 授权许可】
2014 Layden and Martindale; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150130163052578.pdf | 2955KB | download | |
Figure 8. | 77KB | Image | download |
Figure 7. | 69KB | Image | download |
Figure 6. | 81KB | Image | download |
Figure 5. | 71KB | Image | download |
Figure 4. | 164KB | Image | download |
Figure 3. | 58KB | Image | download |
Figure 2. | 103KB | Image | download |
Figure 1. | 103KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
【 参考文献 】
- [1]Ryan JF, Pang K, Schnitzler CE, Nguyen AD, Moreland RT, Simmons DK, Koch BJ, Francis WR, Havlak P, Comparative Sequencing Program NISC, Smith SA, Putnam NH, Haddock SHD, Dunn CW, Wolfsberg TG, Mullikin JC, Martindale MQ, Baxevanis AD: The genome of the ctenophore mnemiopsis leidyi and its implications for cell type evolution. Science 2013., 342doi:1126/science. 124592
- [2]Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G: Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 2008, 452:745-749.
- [3]Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS: The Trichoplax genome and the nature of placozoans. Nature 2008, 454:955-960.
- [4]Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, Larroux C, Putnam NH, Stanke M, Adamska M, Darling A, Degnan SM, Oakley TH, Plachetzki DC, Zhai Y, Adamski M, Calcino A, Cummins SF, Goodstein DM, Harris C, Jackson DJ, Leys SP, Shu S, Woodcroft BJ, Vervoort M, Kosik KS, et al.: The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 2010, 466:720-726.
- [5]Liu J, Sato C, Cerletti M, Wagers A: Notch Signaling in the Regulation of Stem Cell Self-Renewal and Differentiation. Curr Top Dev Biol. 2010, 92:367-409.
- [6]Shawber C, Nofziger D, Hsieh JJD, Lindsell C, Bogler O, Hayward D, Weinmaster G: Notch signaling inhibits muscle cell differentiation through a CBF1-independent pathway. Development 1996, 122:3765-3773.
- [7]Ye Y, Lukinova N, Fortini ME: Neurogenic phenotypes and altered Notch processing in Drosophila presenilin mutants. Nature 1999, 398:525-529.
- [8]Koch U, Lehal R, Radtke F: Stem cells living with a Notch. Development 2013, 140:689-704.
- [9]Bray SJ: Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 2006, 7:678-689.
- [10]Simpson P: Notch and the choice of cell fate in Drosophila neuroepithelium. Trends Genet 1990, 6:343-345.
- [11]Skeath JB: At the nexus between pattern formation and cell-type specification: the generation of individual neuroblast fates in the Drosophila embryonic central nervous system. Bioessays 1999, 21:922-931.
- [12]Artavanis-Tsakonas S, Simpson P: Choosing a cell fate: a view from the Notch locus. Trends Genet 1991, 7:403-408.
- [13]Shimojo H, Ohtsuka T, Kageyama R: Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 2008, 58:52-64.
- [14]Cubas P, De Celis JF, Campuzano S: Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes & Dev 1991, 5:996-1008.
- [15]Bertrand N, Castro DS, Guillemot F: Proneural genes and the specification of neural cell types. Nat Rev Neurosci 2002, 3:1-14.
- [16]Le Gall M, De Mattei C, Giniger E: Molecular separation of two signaling pathways for the receptor, Notch. Dev Biol 2008, 313:556-567.
- [17]Sanalkumar R, Dhanesh SB, James J: Non-canonical activation of Notch signaling/target genes in vertebrates. Cell Mol Life Sci 2010, 67:2957-2968.
- [18]Lecourtois M, Schweisguth F: The neurogenic suppressor of hairless DNA-binding protein mediates the transcriptional activation of the enhancer of split complex genes triggered by Notch signaling. Genes Dev 1995, 9:2598-2608.
- [19]Gazave E, Lapébie P, Richards GS, Brunet F, Ereskovsky AV, Degnan BM, Borchiellini C, Vervoort M, Renard E: Origin and evolution of the Notch signalling pathway: an overview from eukaryotic genomes. BMC Evol Biol 2009, 9:249. BioMed Central Full Text
- [20]Heitzler P: Biodiversity and Noncanonical Notch Signaling. Curr Top Dev Biol 2010, 92:457-481.
- [21]Galliot B, Quiquand M, Ghila L, de Rosa R, Miljkovic-Licina M, Chera S: Origins of neurogenesis, a cnidarian view. Dev Biol 2009, 332:2-24.
- [22]D’Souza B, Meloty-Kapella L, Weinmaster G: Canonical and Non-Canonical Notch Ligands. Curr Top Dev Biol 2010, 92:73-129.
- [23]Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, Borman J, Busam D, Disbennett K, Pfannkoch C, Sumin N, Sutton GG, Viswanathan LD, Walenz B, Goodstein DM, Hellsten U, Kawashima T, Prochnik SE, Putnam NH, Shu S, Blumberg B, Dana CE, Gee L, Kibler DF, Law L, Lindgens D, Martinez DE, Peng J, et al.: The dynamic genome of Hydra. Nature 2010, 464:592-596.
- [24]Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS: Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 2007, 317:86-94.
- [25]Richards GS, Degnan BM: The expression of Delta ligands in the sponge Amphimedon queenslandica suggests an ancient role for Notch signaling in metazoan development. Evodevo 2012, 3:1. BioMed Central Full Text
- [26]Marlow H, Roettinger E, Boekhout M, Martindale MQ: Functional roles of Notch signaling in the cnidarian Nematostella vectensis. Dev Biol 2012, 362:1-14.
- [27]Münder S, Tischer S, Grundhuber M, Büchels N, Bruckmeier N, Eckert S, Seefeldt CA, Prexl A, Käsbauer T, Böttger A: Notch-signaling is required for head regeneration and tentacle patterning in Hydra. Dev Biol 2013, 383:146-157.
- [28]Käsbauer T, Towb P, Alexandrova O, David CN, Dall’Armi E, Staudigl A, Stiening B, Böttger A: The Notch signaling pathway in the cnidarian Hydra. Dev Biol 2007, 303:376-390.
- [29]Dovey HF, John V, Anderson JP, Chen LZ, de Saint AP, Fang LY, Freedman SB, Folmer B, Goldbach E, Holsztynska EJ, Hu KL, Johnson-Wood KL, Kennedy SL, Kholodenko D, Knops JE, Latimer LH, Lee M, Liao Z, Lieberburg IM, Motter RN, Mutter LC, Nietz J, Quinn KP, Sacchi KL, Seubert PA, Shopp GM, Thorsett ED, Tung JS, Wu J, Yang S, et al.: Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 2001, 76:173-181.
- [30]Layden MJ, Boekhout M, Martindale MQ: Nematostella vectensis achaete-scute homolog NvashA regulates embryonic ectodermal neurogenesis and represents an ancient component of the metazoan neural specification pathway. Development 2012, 139:1013-1022.
- [31]Marlow HQ, Srivastava M, Matus DQ, Rokhsar D, Martindale MQ: Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. Devel Neurobio 2009, 69:235-254.
- [32]Layden MJ, Meyer NP, Pang K, Seaver EC, Martindale MQ: Expression and phylogenetic analysis of the zic gene family in the evolution and development of metazoans. Evodevo 2010, 1:12. BioMed Central Full Text
- [33]Wolenski FS, Layden MJ, Martindale MQ, Gilmore TD, Finnerty JR: Characterizing the spatiotemporal expression of RNAs and proteins in the starlet sea anemone, Nematostella vectensis. Nat Protoc 2013, 8:900-915.
- [34]Layden MJ, Röttinger E, Wolenski FS, Gilmore TD, Martindale MQ: Microinjection of mRNA or morpholinos for reverse genetic analysis in the starlet sea anemone, Nematostella vectensis. Nat Protoc 2013, 8:924-934.
- [35]Sinigaglia C, Busengdal H, Leclère L, Technau U, Rentzsch F: The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian. Plos Biol 2013, 11:e1001488.
- [36]Nakanishi N, Renfer E, Technau U, Rentzsch F: Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms. Development 2011, 139:347-357.
- [37]Kopan R, Nye JS, Weintraub H: The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 1994, 120:2385-2396.
- [38]Magie CR, Pang K, Martindale MQ: Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev Genes Evol 2005, 215:618-630.
- [39]Zenkert C, Takahashi T, Diesner MO, Ozbek S: Morphological and molecular analysis of the nematostella vectensis cnidom. PLoS One 2011, 6:e22725.
- [40]Genikhovich G, Technau U: Complex functions of Mef2 splice variants in the differentiation of endoderm and of a neuronal cell type in a sea anemone. Development 2011, 138:4911-4919.
- [41]Williams RB: Studies on the nematosomes of Nematostella vectensis Stephenson (coelenterata: Actiniaria). J Nat Hist 1979, 13:60-80.
- [42]Kageyama R, Ohtsuka T, Kobayashi T: The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development 2007, 134:1243-1251.