期刊论文详细信息
Journal of Neuroinflammation
TNF-α promotes cerebral pericyte remodeling in vitro, via a switch from α1 to α2 integrins
Richard Milner1  Jennifer V Welser-Alves1  Amin Boroujerdi1  Ulrich Tigges1 
[1] Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
关键词: Vascular remodeling;    Integrin;    Extracellular matrix;    Migration;    Adhesion;    Pericyte;   
Others  :  1160016
DOI  :  10.1186/1742-2094-10-33
 received in 2012-12-05, accepted in 2013-02-15,  发布年份 2013
PDF
【 摘 要 】

Background

There is increasing evidence to suggest that pericytes play a crucial role in regulating the remodeling state of blood vessels. As cerebral pericytes are embedded within the extracellular matrix (ECM) of the vascular basal lamina, it is important to understand how individual ECM components influence pericyte remodeling behavior, and how cytokines regulate these events.

Methods

The influence of different vascular ECM substrates on cerebral pericyte behavior was examined in assays of cell adhesion, migration, and proliferation. Pericyte expression of integrin receptors was examined by flow cytometry. The influence of cytokines on pericyte functions and integrin expression was also examined, and the role of specific integrins in mediating these effects was defined by function-blocking antibodies. Expression of pericyte integrins within remodeling cerebral blood vessels was analyzed using dual immunofluorescence (IF) of brain sections derived from the animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE).

Results

Fibronectin and collagen I promoted pericyte proliferation and migration, but heparan sulfate proteoglycan (HSPG) had an inhibitory influence on pericyte behavior. Flow cytometry showed that cerebral pericytes express high levels of α5 integrin, and lower levels of α1, α2, and α6 integrins. The pro-inflammatory cytokine tumor necrosis factor (TNF)-α strongly promoted pericyte proliferation and migration, and concomitantly induced a switch in pericyte integrins, from α1 to α2 integrin, the opposite to the switch seen when pericytes differentiated. Inhibition studies showed that α2 integrin mediates pericyte adhesion to collagens, and significantly, function blockade of α2 integrin abrogated the pro-modeling influence of TNF-α. Dual-IF on brain tissue with the pericyte marker NG2 showed that while α1 integrin was expressed by pericytes in both stable and remodeling vessels, pericyte expression of α2 integrin was strongly induced in remodeling vessels in EAE brain.

Conclusions

Our results suggest a model in which ECM constituents exert an important influence on pericyte remodeling status. In this model, HSPG restricts pericyte remodeling in stable vessels, but during inflammation, TNF-α triggers a switch in pericyte integrins from α1 to α2, thereby stimulating pericyte proliferation and migration on collagen. These results thus define a fundamental molecular mechanism in which TNF-α stimulates pericyte remodeling in an α2 integrin-dependent manner.

【 授权许可】

   
2013 Tigges et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150410092030594.pdf 1675KB PDF download
Figure 6. 150KB Image download
Figure 5. 137KB Image download
Figure 4. 96KB Image download
20150409030215878.pdf 1784KB PDF download
Figure 3. 27KB Image download
Figure 1. 115KB Image download
【 图 表 】

Figure 1.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Andreeva ER, Pugach IM, Gordon D, Orekhov AN: Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue Cell 1998, 30:127-135.
  • [2]Armulik A, Abramsson A, Betsholtz C: Endothelial/pericyte interactions. Circ Res 2005, 97:512-523.
  • [3]Krueger M, Bechmann I: CNS pericytes: concepts, misconceptions and a way out. Glia 2010, 58:1-10.
  • [4]Hirschi KK, D’Amore PA: Pericytes in the microvasculature. Cardiovasc Res 1996, 32:687-698.
  • [5]Hamilton NB, Attwell D, Hall CN: Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenergetics 2010, 2:5.
  • [6]Peppiatt CM, Howarth C, Mobbs P, Attwell D: Bidirectional control of CNS capillary diameter by pericytes. Nature 2006, 443:700-704.
  • [7]Dore-Duffy P, LaManna JC: Physiologic angiodynamics in the brain. Antioxid Redox Signal 2007, 9:1363-1371.
  • [8]Betsholtz C, Lindholm P, Gerhardt H: Role of pericytes in vascular morphogenesis. EXS 2005, 94:115-125.
  • [9]Dore-Duffy P, Owen C, Balabnov R, Murphy S, Beaumont T, Rafols JA: Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 2000, 60:55-69.
  • [10]Lindahl P, Johansson BR, Leveen P, Betsholtz C: Pericyte loss amd microaneurysm formation in PDGF-B deficient mice. Science 1997, 277:242-245.
  • [11]Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C: Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation. Development 1999, 126:3047-3055.
  • [12]Hamann GF, Okada Y, Fitridge R, del Zoppo GJ: Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion. Stroke 1995, 26:2121-21266.
  • [13]Herken R, Gotz W, Thies M: Appearance of laminin, heparan sulphate proteoglycan and collagen type IV during intital stages of vascularization of the neuroepithelium of the mouse embryo. J Anat 1990, 169:189-195.
  • [14]Baeten KM, Akassoglou K: Extracellular matrix and matrix receptors in blood–brain barrier formation and stroke. Dev Neurobiol 2011, 71:1018-1039.
  • [15]Li L, Welser JV, Milner R: Absence of the αvβ3 integrin dictates the time-course of angiogenesis in the hypoxic central nervous system: accelerated endothelial proliferation correlates with compensatory increases in α5β1 integrin expression. J Cereb Blood Flow Metab 2010, 30:1031-1043.
  • [16]Risau W, Lemmon V: Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev Biol 1988, 125:441-450.
  • [17]Hynes RO: Genetic analyses of cell-matrix interactions in development. Curr Op in Genetics and Development 1994, 4:569-574.
  • [18]Stromblad S, Cheresh DA: Integrins, angiogenesis and vascular cell survival. Chem Biol 1996, 3:881-885.
  • [19]Hemler ME: Integrins. In Guidebook to the extracellular matrix, anchor and adhesion proteins. Edited by Kreis T, Vale R. New York: Oxford University Press; 1999:196-212.
  • [20]Hynes RO: Integrins: bidirectional allosteric signaling machines. Cell 2002, 110:673-687.
  • [21]Milner R, Hung S, Erokwu B, Dore-Duffy P, LaManna JC, del Zoppo GJ: Increased expression of fibronectin and the α5β1 integrin in angiogenic cerebral blood vessels of mice subject to hypobaric hypoxia. Mol Cell Neurosci 2008, 38:43-52.
  • [22]Li L, Liu F, Welser-Alves JV, McCullough LD, Milner R: Upregulation of fibronectin and the α5β1 and αvβ3 integrins on blood vessels within the cerebral ischemic penumbra. Exp Neurol 2012, 233:283-291.
  • [23]Li L, Welser-Alves JV, van der Flier A, Boroujerdi A, Hynes RO, Milner R: An angiogenic role for the α5β1 integrin in promoting endothelial cell proliferatiion during cerebral hypoxia. Exp Neurol 2012, 237:46-54.
  • [24]Milner R, Hung S, Wang X, Berg G, Spatz M, del Zoppo G: Responses of endothelial cell and astrocyte matrix-integrin receptors to ischemia mimic those observed in the neurovascular unit. Stroke 2008, 39:191-197.
  • [25]Tigges U, Welser-Alves JV, Boroujerdi A, Milner R: A novel and simple method for culturing pericytes from mouse brain. Microvasc Res 2012, 84:74-80.
  • [26]Milner R, Campbell IL: The extracellular matrix and cytokines regulate microglial integrin expression and activation. J Immunol 2003, 170:3850-3858.
  • [27]Welser J, Li L, Milner R: Microglial activation state exerts a biphasic influence on brain endothelial cell proliferation by regulating the balance of TNF and TGF-β1. J Neuroinflammation 2010, 7:89. BioMed Central Full Text
  • [28]Milner R, Campbell IL: Cytokines regulate microglial adhesion to laminin and astrocyte extracellular matrix via protein kinase C-dependent activation of the α6β1 integrin. J Neurosci 2002, 22:1562-1572.
  • [29]Wang J, Milner R: Fibronectin promotes brain capillary endothelial cell survival and proliferation through α5β1 and αvβ3 integrins via MAP kinase signaling. J Neurochem 2006, 96:148-159.
  • [30]Klein S, Roghani M, Rifkin DB: Fibroblast growth factors as angiogenesis factors. EXS 1997, 79:159-192.
  • [31]Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP, Risau W, Ulrich A: High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993, 72:835-846.
  • [32]Baluk P, Yao LC, Feng J, Romano T, Jung SS, Schreiter JL, Yan L, Shealy DJ, McDonald DM: TNF-alpha drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice. J Clin Invest 2009, 119:2954-2964.
  • [33]Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield U, Heine I, Liotta A, Falanga J, Kehrl JH, Fauci AS: Transforming growth factor type β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci 1986, 83:4167-4171.
  • [34]Shaw LM, Mercurio AM: Interferon gamma and lipopolysaccharide promote macrophage adherence to basement membrane glycoproteins. J Exp Med 1989, 169:303-308.
  • [35]Wei J, Shaw LM, Mercurio AM: Integrin signalling in leukocytes: lessons from the α6β1 integrin. J Leukoc Biol 1997, 61:397-407.
  • [36]Heino J: The collagen receptor integrins have distinct ligand recognition and signaling functions. Matrix Biol 2000, 19:319-323.
  • [37]Tulla M, Pentikainen OT, Viitasalo T, Kapyla J, Impola U, Nykvist L, Johnson MS, Heino J: Selective binding of collagen subtypes by integrin alpha 1I, alpha 2I and alpha 10I domains. J Biol Chem 2001, 276:48206-48212.
  • [38]Roscoe WA, Welsh ME, Carter DE, Karlik SJ: VEGF and angiogenesis in acute and chronic MOG (35–55) peptide induced EAE. J Neuroimmunol 2009, 209:6-15.
  • [39]Seabrook TJ, Littlewood-Evans A, Brinkmann V, Pollinger B, Schnell C, Hiestand PC: Angiogenesis is present in experimental autoimmune encephalomyelitis and pro-angiogenic factors are increased in multiple sclerosis lesions. J Neuroinflammation 2010, 7:95. BioMed Central Full Text
  • [40]Dore-Duffy P, Katychev A, Wang X, Van Buren E: CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab 2006, 26:613-624.
  • [41]Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB: NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 2001, 222:218-227.
  • [42]Ozerdem U, Monosov E, Stallcup WB: NG2 proteoglycan expression by pericytes in pathological microvasculature. Microvasc Res 2002, 63:129-134.
  • [43]Yamagishi S, Yonekura H, Yamamoto Y, Fujimori H, Sakurai S, Tanaka N, Yamamoto H: Vascular endothelial growth factor acts as a pericyte mitogen under hypoxic conditions. Lab Invest 1999, 79:501-509.
  • [44]McIntosh LC, Muckersie L, Forrester JV: Retinal capillary endothelial cells prefer different substrates for growth and migration. Tissue Cell 1988, 20:193-209.
  • [45]George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO: Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 1993, 119:1079-1091.
  • [46]Kim S, Bell K, Mousa SA, Varner JA: Regulation of angiogenesis in vivo by ligation of integrin α5β1 with the central cell-binding domain of fibronectin. Am J Pathol 2000, 156:1345-1362.
  • [47]Abramovitch R, Dafni H, Neeman M, Nagler A, Pines M: Inhibition of neovascularization and tumor growth and facilitation of wound repair by halofuginone, an inhibitor of collagen type I synthesis. Neoplasia 1999, 1:321-329.
  • [48]Jackson CJ, Jenkins KL: Type I collagen fibrils promote rapid vascular tube formation upon contact with the apical side of cultured endothelium. Exp Cell Res 1991, 192:319-323.
  • [49]Gauer S, Schulze-Lohoff E, Schleicher E, Sterzel RB: Glomerular basement membrane-derived perlecan inhibits mesangial cell adhesion to fibronectin. Eur J Cell Biol 1996, 70:233-242.
  • [50]Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N: Macrophage-induced angiogenesis is mediated by tumour necrosis factor -α. Nature 1987, 329:630-632.
  • [51]Takata F, Dohgu S, Matsumoto J, Takahashi H, Machida T, Wakigawa T, Harada E, Miyaji H, Koga M, Nishioku T: Brain pericytes among cells constituting the blood–brain barrier are highly sensitive to tumor necrosis factor-α, releasing matrix metalloproteinase-9 and migrating in vitro. J Neuroinflammation 2011, 8:106. BioMed Central Full Text
  • [52]Loeser RF, Sadley S, Tan L, Goldring MB: Integrin expression by primary and immortalized human chondrocytes: evidence of a differential role for alpha1 beta1 and alpha2 beta1 integrins in mediating chondrocyte adhesion to types II and VI collagen. Osteoarthritis Cartilage 2000, 8:96-105.
  • [53]Mendrick DL, Kelly DM: Temporal expression of VLA-2 and modulation of its ligand specificity by rat glomerular epithelial cells in vitro. Lab Invest 1993, 69:690-702.
  • [54]Mendrick DL, Kelly DM, DuMont SS, Sandstrom DJ: Glomerular epithelial and mesangial cells differentially modulate the binding specificities of VLA-1 and VLA-2. Lab Invest 1995, 72:367-375.
  • [55]Chung CH, Lin KT, Chang CH, Peng HC, Huang TF: The integrin alpha2 beta1 agonist, aggretin, promotes proliferation and migration of VSMC through NF-kB translocation and PDGF production. Br J Pharmacol 2009, 156:846-856.
  • [56]Hollenbeck ST, Itoh H, Louie O, Fairies PL, Liu B, Kent KC: Type I collagen synergistically enhances PDGF-induced smooth muscle cell proliferation through pp60src-dependent crosstalk between the alpha2 beta1 integrin and PDGF beta receptor. Biochem Biophys Res Comm 2004, 325:328-337.
  • [57]Maaser K, Wolf K, Klein CE, Niggemann B, Zanker KS, Brocker EB, Friedl P: Functional hierarchy of simultaneously expressed adhesion receptors: integrin alpha2 beta 1 but not CD44 mediates MV3 melanoma cell migration and matrix reorganization within three-dimensional hylauronan-containing collagen matrices. Mol Biol Cell 1999, 10:3067-3079.
  • [58]Lochter A, Navre M, Werb Z, Bissell MJ: Alpha1 and alpha2 integrins mediate invasive activity of mouse mammary carcinoma cells through regulation of stromelysin-1 expression. Mol Biol Cell 1999, 10:271-282.
  • [59]van der Bij GJ, Oosterling SJ, Bogels M, Bhoelan F, Flutisma DM, Beelen RH, Meijer S, van Egmond M: Blocking alpha2 integrins on rat CC531s colon carcinoma cells prevents operation-induced augmentation of liver metastases outgrowth. Hepatology 2008, 47:532-543.
  • [60]Van Slambrouck S, Jenkins AR, Romero AE, Steelant WF: Reorganization of the integrin alpha2 subunit controls cell adhesion and cancer cell invasion in prostate cancer. Int J Oncol 2009, 34:1717-1726.
  • [61]Yang C, Zeisberg M, Lively JC, Nyberg P, Afdhal N, Kalluri R: Integrin alpha1 beta1 and alpha2 beta1 are the key regulators of hepatocarcinoma cell invasion across the fibrotic matrix microenvironment. Cancer Res 2003, 63:8312-8317.
  • [62]Montesano R, Soulie P, Eble JA, Carrozzino F: Tumour necrosis factor alpha confers an invasive, transformed phenotype on mammary epithelial cells. J Cell Sci 2005, 1118:3487-3500.
  • [63]Sweeney SM, Dilullo G, Slater SJ, Martinez J, Iozzo RV, Lauer-Fields JL, Fields GB: San Antonio JD: Angiogenesis in collagen I requires alpha2 beta1 ligation of a GFP*GER sequence and possibly p38 MAPK activation and focal adhesion disassembly. J Biol Chem 2003, 278:30516-30524.
  • [64]Hong YK, Lange-Asschenfeldt B, Velasco P, Hirakawa S, Kunstfeld R, Brown LF, Bohlen P, Senger DR, Detmar M: VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1 beta1 and alpha2 beta1 integrins. FASEB J 2004, 18:1111-1113.
  • [65]Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE: Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 2009, 114:5091-5101.
  • [66]Chen J, Diacovo TG, Grenache DG, Santoro SA, Zutter MM: The alpha(2) integrin subunit-deficient mouse: a multifaceted phenotype including defects of branching morphogenesis and hemostasis. Am J Pathol 2002, 161:337-344.
  文献评价指标  
  下载次数:14次 浏览次数:8次