期刊论文详细信息
Journal of Hematology & Oncology
Cancer stem cells in basic science and in translational oncology: can we translate into clinical application?
Peter Valent4  Christoph C Zielinski1  Thomas W Grunt1  Brigitte Marian3  Harald Herrmann2  Irina Sadovnik4  Sabine Cerny-Reiterer4  Katharina Blatt4  Axel Schulenburg5 
[1] Department of Medicine I, Division of Clinical Oncology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Wien, Austria;Department of Radiation Therapy, Medical University of Vienna, Spitalgasse 23, Vienna 1090, Wien, Austria;Department of Medicine I, Institute for Cancer Research, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Wien, Austria;Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Wien, Austria;Department of Medicine I, Stem Cell Transplantation Unit, Medical University of Vienna, Waehringer Guertel 18-20, Wien, A-1090, Austria
关键词: Drug resistance;    Targeted therapy;    Cancer stem cells;   
Others  :  1133352
DOI  :  10.1186/s13045-015-0113-9
 received in 2014-10-15, accepted in 2015-01-14,  发布年份 2015
PDF
【 摘 要 】

Since their description and identification in leukemias and solid tumors, cancer stem cells (CSC) have been the subject of intensive research in translational oncology. Indeed, recent advances have led to the identification of CSC markers, CSC targets, and the preclinical and clinical evaluation of the CSC-eradicating (curative) potential of various drugs. However, although diverse CSC markers and targets have been identified, several questions remain, such as the origin and evolution of CSC, mechanisms underlying resistance of CSC against various targeted drugs, and the biochemical basis and function of stroma cell-CSC interactions in the so-called ‘stem cell niche.’ Additional aspects that have to be taken into account when considering CSC elimination as primary treatment-goal are the genomic plasticity and extensive subclone formation of CSC. Notably, various cell fractions with different combinations of molecular aberrations and varying proliferative potential may display CSC function in a given neoplasm, and the related molecular complexity of the genome in CSC subsets is considered to contribute essentially to disease evolution and acquired drug resistance. In the current article, we discuss new developments in the field of CSC research and whether these new concepts can be exploited in clinical practice in the future.

【 授权许可】

   
2015 Schulenburg et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150304142704207.pdf 1162KB PDF download
Figure 3. 36KB Image download
Figure 2. 78KB Image download
Figure 1. 85KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer stem cells. Nature 2001, 414:105-11.
  • [2]Ailles LE, Weissman IL: Cancer stem cells in solid tumors. Curr Opin Biotechnol 2007, 18:460-6.
  • [3]Dalerba P, Cho RW, Clarke MF: Cancer stem cells: models and concepts. Annu Rev Med 2007, 58:267-84.
  • [4]Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, et al.: A perivascular niche for brain tumor stem cells. Cancer Cell 2007, 11:69-82.
  • [5]Dick JE: Stem cell concepts renew cancer research. Blood 2008, 112:4793-807.
  • [6]Cho RW, Clarke MF: Recent advances in cancer stem cells. Curr Opin Genet Dev 2008, 18:48-53.
  • [7]Schatton T, Frank NY, Frank MH: Identification and targeting of cancer stem cells. Bioessays 2009, 31:1038-49.
  • [8]Schulenburg A, Bramswig K, Herrmann H, Karlic H, Mirkina I, Hubmann R, et al.: Neoplastic stem cells: current concepts and clinical perspectives. Crit Rev Oncol Hematol 2010, 76:79-98.
  • [9]Greaves M: Cancer stem cells: back to Darwin? Semin Cancer Biol 2010, 20(2):65-70.
  • [10]Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al.: Cancer stem cells - perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006, 66:9339-44.
  • [11]Valent P: Emerging stem cell concepts for imatinib-resistant chronic myeloid leukaemia: implications for the biology, management, and therapy of the disease. Br J Haematol 2008, 142(3):361-78.
  • [12]Dick JE, Lapidot T: Biology of normal and acute myeloid leukemia stem cells. Int J Hematol 2005, 82:389-96.
  • [13]Hope KJ, Jin L, Dick JE: Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004, 5:738-43.
  • [14]Konopleva MY, Jordan CT: Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol 2011, 29:591-9.
  • [15]Sloma I, Jiang X, Eaves AC, Eaves CJ: Insights into the stem cells of chronic myeloid leukemia. Leukemia 2010, 24:1823-33.
  • [16]Roboz GJ, Guzman M: Acute myeloid leukemia stem cells: seek and destroy. Expert Rev Hematol 2009, 2:663-72.
  • [17]Holyoake TL, Jiang X, Jorgensen HG, Graham S, Alcorn MJ, Laird C, et al.: Primitive quiescent leukemic cells from patients with chronic myeloid leukemia spontaneously initiate factor-independent growth in vitro in association with up-regulation of expression of interleukin-3. Blood 2001, 97:720-8.
  • [18]Copland M: Chronic myelogenous leukemia stem cells: what’s new? Curr Hematol Malig Rep 2009, 4:66-73.
  • [19]Singh A, Settleman J: EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 2010, 29:4741-51.
  • [20]Donnenberg VS, Donnenberg AD: Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 2005, 45:872-7.
  • [21]Dean M, Fojo T, Bates S: Tumour stem cells and drug resistance. Nat Rev Cancer 2005, 5:275-84.
  • [22]Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A, et al.: Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007, 21:926-35.
  • [23]Barnes DJ, Melo JV: Primitive, quiescent and difficult to kill: the role of non-proliferating stem cells in chronic myeloid leukemia. Cell Cycle 2006, 5:2862-6.
  • [24]Welch JS: Mutation position within evolutionary subclonal architecture in AML. Semin Hematol 2014, 51:273-83.
  • [25]Wang M, Wang Y, Zhong J. Side population cells and drug resistance in breast cancer. Mol Med Rep. 2015;doi:10.3892/mmr.2015.3291.
  • [26]Preuner S, Mitterbauer G, Mannhalter C, Herndlhofer S, Sperr WR, Valent P, et al.: Quantitative monitoring of BCR/ABL1 mutants for surveillance of subclone-evolution, -expansion, and -depletion in chronic myeloid leukaemia. Eur J Cancer 2012, 48:233-6.
  • [27]Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, et al.: Identification of cells initiating human melanomas. Nature 2008, 451:345-9.
  • [28]Valent P: Targeting of leukemia-initiating cells to develop curative drug therapies: straightforward but nontrivial concept. Curr Cancer Drug Targets 2011, 11(1):56-71.
  • [29]Frank NY, Schatton T, Frank MH: The therapeutic promise of the cancer stem cell concept. J Clin Invest 2010, 120:41-50.
  • [30]Besancon R, Valsesia-Wittmann S, Puisieux A, de Fromentel CC, Maguer-Satta V: Cancer stem cells: the emerging challenge of drug targeting. Curr Med Chem 2009, 16:394-416.
  • [31]Korkaya H, Wicha MS: Selective targeting of cancer stem cells: a new concept in cancer therapeutics. BioDrugs 2007, 21:299-310.
  • [32]Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997, 3:730-7.
  • [33]Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al.: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994, 367:645-8.
  • [34]Civenni G, Walter A, Kobert N, Mihic-Probst D, Zipser M, Belloni B, et al.: Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res 2011, 71:3098-109.
  • [35]Pearson T, Greiner DL, Shultz LD: Creation of “humanized” mice to study human immunity. Curr Protoc Immunol 2008, 15(15):21.
  • [36]Ishikawa F, Saito Y, Yoshida S, Harada M, Shultz LD: The differentiative and regenerative properties of human hematopoietic stem/progenitor cells in NOD-SCID/IL2rgamma(null) mice. Curr Top Microbiol Immunol 2008, 324:87-94.
  • [37]Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ: Efficient tumour formation by single human melanoma cells. Nature 2008, 456:593-8.
  • [38]Taussig DC, Miraki-Moud F, Anjos-Afonso F, Pearce DJ, Allen K, Ridler C, et al.: Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood 2008, 112:568-75.
  • [39]Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al.: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007, 1:313-23.
  • [40]Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003, 100:3983-8.
  • [41]Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al.: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006, 444:756-60.
  • [42]Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al.: Identification of human brain tumour initiating cells. Nature 2004, 432:396-401.
  • [43]Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al.: Identification of pancreatic cancer stem cells. Cancer Res 2007, 67:1030-7.
  • [44]Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, et al.: Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 2008, 13:153-66.
  • [45]Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, et al.: Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 2007, 25:1315-21.
  • [46]O’Brien CA, Pollett A, Gallinger S, Dick JE: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007, 445:106-10.
  • [47]Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al.: Identification and expansion of human colon-cancer-initiating cells. Nature 2007, 445:111-5.
  • [48]Bohm A, Herrmann H, Mitterbauer-Hohendanner G, Hauswirth AW, Rabitsch W, Mitterbauer M, et al.: Stable non-transforming minimal residual disease in Philadelphia chromosome positive acute lymphoblastic leukemia after autologous transplantation: origin from neoplastic yet ‘pre-leukemic’ stem cells? Leuk Lymphoma 2011, 52:842-8.
  • [49]Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al.: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003, 17:1253-70.
  • [50]Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, et al.: A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 2005, 65:9328-37.
  • [51]Dexter TM, Allen TD, Lajtha LG: Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 1977, 91:335-44.
  • [52]Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al.: Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 2003, 100:15178-83.
  • [53]Vermeulen L, Todaro M, de Sousa MF, Sprick MR, Kemper K, Perez Alea M, et al.: Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci U S A 2008, 105:13427-32.
  • [54]Gerashchenko BI, Huna A, Erenpreisa J: Characterization of breast cancer DNA content profiles as a prognostic tool. Exp Oncol 2014, 36:219-25.
  • [55]Moserle L, Ghisi M, Amadori A, Indraccolo S: Side population and cancer stem cells: therapeutic implications. Cancer Lett 2010, 288:1-9.
  • [56]Fukaya R, Ohta S, Yamaguchi M, Fujii H, Kawakami Y, Kawase T, et al.: Isolation of cancer stem-like cells from a side population of a human glioblastoma cell line, SK-MG-1. Cancer Lett 2010, 291:150-7.
  • [57]Murase M, Kano M, Tsukahara T, Takahashi A, Torigoe T, Kawaguchi S, et al.: Side population cells have the characteristics of cancer stem-like cells/cancer-initiating cells in bone sarcomas. Br J Cancer 2009, 101:1425-32.
  • [58]Li T, Su Y, Mei Y, Leng Q, Leng B, Liu Z, et al.: ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients’ outcome. Lab Invest 2010, 90:234-44.
  • [59]Ran D, Schubert M, Pietsch L, Taubert I, Wuchter P, Eckstein V, et al.: Aldehyde dehydrogenase activity among primary leukemia cells is associated with stem cell features and correlates with adverse clinical outcomes. Exp Hematol 2009, 37:1423-34.
  • [60]Chen YC, Chen YW, Hsu HS, Tseng LM, Huang PI, Lu KH, et al.: Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun 2009, 385:307-13.
  • [61]Moreb JS: Aldehyde dehydrogenase as a marker for stem cells. Curr Stem Cell Res Ther 2008, 3:237-46.
  • [62]Polyak K, Hahn WC: Roots and stems: stem cells in cancer. Nat Med 2006, 12:296-300.
  • [63]Weissman IL, Shizuru JA: The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 2008, 112:3543-53.
  • [64]Florian S, Sonneck K, Hauswirth AW, Krauth MT, Schernthaner GH, Sperr WR, et al.: Detection of molecular targets on the surface of CD34+/CD38– stem cells in various myeloid malignancies. Leuk Lymphoma 2006, 47:207-22.
  • [65]Moshaver B, van Rhenen A, Kelder A, van der Pol M, Terwijn M, Bachas C, et al.: Identification of a small subpopulation of candidate leukemia initiating cells in the side population (SP) of patients with acute myeloid leukemia. Stem Cells 2008, 26(12):3059-67.
  • [66]Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ: Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 1997, 89:3104-12.
  • [67]van Rhenen A, van Dongen GA, Kelder A, Rombouts EJ, Feller N, Moshaver B, et al.: The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood 2007, 110:2659-66.
  • [68]Hosen N, Park CY, Tatsumi N, Oji Y, Sugiyama H, Gramatzki M, et al.: CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci U S A 2007, 104:11008-13.
  • [69]Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL, et al.: The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 2000, 14:1777-84.
  • [70]Fina L, Molgaard HV, Robertson D, Bradley NJ, Monaghan P, Delia D, et al.: Expression of the CD34 gene in vascular endothelial cells. Blood 1990, 75:2417-26.
  • [71]Kitamura Y, Hirotab S: Kit as a human oncogenic tyrosine kinase. Cell Mol Life Sci 2004, 61:2924-31.
  • [72]Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE: Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006, 12:1167-74.
  • [73]Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr, et al.: CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009, 138:286-99.
  • [74]Kim JB, Ko E, Han W, Lee JE, Lee KM, Shin I, et al.: CD24 cross-linking induces apoptosis in, and inhibits migration of, MCF-7 breast cancer cells. BMC Cancer 2008, 8:118.
  • [75]Saito Y, Kitamura H, Hijikata A, Tomizawa-Murasawa M, Tanaka S, Takagi S, et al.: Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci Transl Med 2010, 2:17ra19.
  • [76]Taussig DC, Pearce DJ, Simpson C, Rohatiner AZ, Lister TA, Kelly G, et al.: Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia. Blood 2005, 106:4086-92.
  • [77]Blatt K, Herrmann H, Hoermann G, Willmann M, Cerny-Reiterer S, Sadovnik I, et al.: Identification of campath-1 (CD52) as novel drug target in neoplastic stem cells in 5q-patients with MDS and AML. Clin Cancer Res 2014, 20(13):3589-602.
  • [78]Taussig DC, Vargaftig J, Miraki-Moud F, Griessinger E, Sharrock K, Luke T, et al.: Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(−) fraction. Blood 2010, 115:1976-84.
  • [79]Nilsson L, Astrand-Grundstrom I, Anderson K, Arvidsson I, Hokland P, Bryder D, et al.: Involvement and functional impairment of the CD34(+)CD38(−)Thy-1(+) hematopoietic stem cell pool in myelodysplastic syndromes with trisomy 8. Blood 2002, 100:259-67.
  • [80]De Smet D, Trullemans F, Jochmans K, Renmans W, Smet L, Heylen O, et al.: Diagnostic potential of CD34+ cell antigen expression in myelodysplastic syndromes. Am J Clin Pathol 2012, 138:732-43.
  • [81]Nilsson L, Astrand-Grundstrom I, Arvidsson I, Jacobsson B, Hellstrom-Lindberg E, Hast R, et al.: Isolation and characterization of hematopoietic progenitor/stem cells in 5q-deleted myelodysplastic syndromes: evidence for involvement at the hematopoietic stem cell level. Blood 2000, 96:2012-21.
  • [82]Jamieson CH, Gotlib J, Durocher JA, Chao MP, Mariappan MR, Lay M, et al.: The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc Natl Acad Sci U S A 2006, 103:6224-9.
  • [83]Kobayashi CI, Takubo K, Kobayashi H, Nakamura-Ishizu A, Honda H, Kataoka K, et al.: The IL-2/CD25 axis maintains distinct subsets of chronic myeloid leukemia-initiating cells. Blood 2014, 123:2540-9.
  • [84]Herrmann H, Sadovnik I, Cerny-Reiterer S, Rulicke T, Stefanzl G, Willmann M, et al.: Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood 2014, 123(25):3951-62.
  • [85]Herrmann H, Cerny-Reiterer S, Gleixner KV, Blatt K, Herndlhofer S, Rabitsch W, et al.: CD34(+)/CD38(−) stem cells in chronic myeloid leukemia express Siglec-3 (CD33) and are responsive to the CD33-targeting drug gemtuzumab/ozogamicin. Haematologica 2012, 97:219-26.
  • [86]Nievergall E, Ramshaw HS, Yong AS, Biondo M, Busfield SJ, Vairo G, et al.: Monoclonal antibody targeting of IL-3 receptor alpha with CSL362 effectively depletes CML progenitor and stem cells. Blood 2014, 123:1218-28.
  • [87]Jaras M, Johnels P, Hansen N, Agerstam H, Tsapogas P, Rissler M, et al.: Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc Natl Acad Sci U S A 2010, 107:16280-5.
  • [88]Cobaleda C, Gutierrez-Cianca N, Perez-Losada J, Flores T, Garcia-Sanz R, Gonzalez M, et al.: A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia. Blood 2000, 95:1007-13.
  • [89]Kong Y, Yoshida S, Saito Y, Doi T, Nagatoshi Y, Fukata M, et al.: CD34 + CD38 + CD19+ as well as CD34 + CD38-CD19+ cells are leukemia-initiating cells with self-renewal capacity in human B-precursor ALL. Leukemia 2008, 22:1207-13.
  • [90]Rossi FM, Zucchetto A, Tissino E, Dal Bo M, Bomben R, Caldana C, et al.: CD49d expression identifies a chronic-lymphocytic leukemia subset with high levels of mobilized circulating CD34(+) hemopoietic progenitors cells. Leukemia 2014, 28:705-8.
  • [91]Matsui W, Wang Q, Barber JP, Brennan S, Smith BD, Borrello I, et al.: Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 2008, 68:190-7.
  • [92]Meyer MJ, Fleming JM, Lin AF, Hussnain SA, Ginsburg E, Vonderhaar BK: CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in estrogen receptor-negative breast cancer. Cancer Res 2010, 70:4624-33.
  • [93]Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, et al.: Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 2013, 31:539-44.
  • [94]Han ME, Jeon TY, Hwang SH, Lee YS, Kim HJ, Shim HE, et al.: Cancer spheres from gastric cancer patients provide an ideal model system for cancer stem cell research. Cell Mol Life Sci 2011, 68:3589-605.
  • [95]Fukamachi H, Seol HS, Shimada S, Funasaka C, Baba K, Kim JH, et al.: CD49f(high) cells retain sphere-forming and tumor-initiating activities in human gastric tumors. PLoS One 2013, 8:e72438.
  • [96]Jiang J, Zhang Y, Chuai S, Wang Z, Zheng D, Xu F, et al.: Trastuzumab (herceptin) targets gastric cancer stem cells characterized by CD90 phenotype. Oncogene 2012, 31:671-82.
  • [97]Jang BG, Lee BL, Kim WH: Distribution of LGR5+ cells and associated implications during the early stage of gastric tumorigenesis. PLoS One 2013, 8:e82390.
  • [98]Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, et al.: Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 2009, 27:1006-20.
  • [99]Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, et al.: Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 2007, 104:10158-63.
  • [100]Haraguchi N, Ishii H, Mimori K, Ohta K, Uemura M, Nishimura J, et al.: CD49f-positive cell population efficiently enriches colon cancer-initiating cells. Int J Oncol 2013, 43:425-30.
  • [101]Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al.: Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007, 449:1003-7.
  • [102]Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, et al.: Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 2008, 15:504-14.
  • [103]Tirino V, Camerlingo R, Franco R, Malanga D, La Rocca A, Viglietto G, et al.: The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer. Eur J Cardiothorac Surg 2009, 36(3):446-53.
  • [104]Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, et al.: EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 2009, 136:1012-24.
  • [105]Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY: CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 2008, 27:1749-58.
  • [106]Kahlert UD, Bender NO, Maciaczyk D, Bogiel T, Bar EE, Eberhart CG, et al.: CD133/CD15 defines distinct cell subpopulations with differential in vitro clonogenic activity and stem cell-related gene expression profile in in vitro propagated glioblastoma multiforme-derived cell line with a PNET-like component. Folia Neuropathol 2012, 50:357-68.
  • [107]Son MJ, Woolard K, Nam DH, Lee J, Fine HA: SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 2009, 4:440-52.
  • [108]Suva ML, Riggi N, Stehle JC, Baumer K, Tercier S, Joseph JM, et al.: Identification of cancer stem cells in Ewing’s sarcoma. Cancer Res 2009, 69:1776-81.
  • [109]Tirino V, Desiderio V, Paino F, De Rosa A, Papaccio F, Fazioli F, et al.: Human primary bone sarcomas contain CD133+ cancer stem cells displaying high tumorigenicity in vivo. Faseb J 2011, 25:2022-30.
  • [110]Adhikari AS, Agarwal N, Wood BM, Porretta C, Ruiz B, Pochampally RR, et al.: CD117 and Stro-1 identify osteosarcoma tumor-initiating cells associated with metastasis and drug resistance. Cancer Res 2010, 70:4602-12.
  • [111]Tian J, Li X, Si M, Liu T, Li J: CD271+ osteosarcoma cells display stem-like properties. PLoS One 2014, 9:e98549.
  • [112]Meirelles K, Benedict LA, Dombkowski D, Pepin D, Preffer FI, Teixeira J, et al.: Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance. Proc Natl Acad Sci U S A 2012, 109:2358-63.
  • [113]Chen J, Wang J, Chen D, Yang J, Yang C, Zhang Y, et al.: Evaluation of characteristics of CD44 + CD117+ ovarian cancer stem cells in three dimensional basement membrane extract scaffold versus two dimensional monocultures. BMC Cell Biol 2013, 14:7.
  • [114]Curley MD, Therrien VA, Cummings CL, Sergent PA, Koulouris CR, Friel AM, et al.: CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells 2009, 27:2875-83.
  • [115]Guo C, Liu H, Zhang BH, Cadaneanu RM, Mayle AM, Garraway IP: Epcam, CD44, and CD49f distinguish sphere-forming human prostate basal cells from a subpopulation with predominant tubule initiation capability. PLoS One 2012, 7:e34219.
  • [116]Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL: CD44+ CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer 2008, 98:756-65.
  • [117]Maitland NJ, Collins AT: Prostate cancer stem cells: a new target for therapy. J Clin Oncol 2008, 26:2862-70.
  • [118]Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP, et al.: Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 2010, 466:133-7.
  • [119]Wilson BJ, Saab KR, Ma J, Schatton T, Putz P, Zhan Q, et al.: ABCB5 maintains melanoma-initiating cells through a proinflammatory cytokine signaling circuit. Cancer Res 2014, 74:4196-207.
  • [120]Mirkina I, Hadzijusufovic E, Krepler C, Mikula M, Mechtcheriakova D, Strommer S, et al.: Phenotyping of human melanoma cells reveals a unique composition of receptor targets and a subpopulation co-expressing ErbB4, EPO-R and NGF-R. PLoS One 2014, 9:e84417.
  • [121]Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, et al.: Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med 2012, 18:618-23.
  • [122]Kemper K, Prasetyanti PR, De Lau W, Rodermond H, Clevers H, Medema JP: Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells 2012, 30:2378-86.
  • [123]Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al.: let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007, 131:1109-23.
  • [124]Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al.: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007, 1:555-67.
  • [125]Takagi S, Saito Y, Hijikata A, Tanaka S, Watanabe T, Hasegawa T, et al.: Membrane-bound human SCF/KL promotes in vivo human hematopoietic engraftment and myeloid differentiation. Blood 2012, 119:2768-77.
  • [126]Sarry JE, Murphy K, Perry R, Sanchez PV, Secreto A, Keefer C, et al.: Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgammac-deficient mice. J Clin Invest 2011, 121:384-95.
  • [127]Vercauteren SM, Sutherland HJ: CD133 (AC133) expression on AML cells and progenitors. Cytotherapy 2001, 3:449-59.
  • [128]Valent P, Bonnet D, Wohrer S, Andreeff M, Copland M, Chomienne C, et al.: Heterogeneity of Neoplastic Stem Cells: Theoretical, Functional, and Clinical Implications. Cancer Res 2013, 73:1037-45.
  • [129]Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, et al.: Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci U S A 2011, 108:7950-5.
  • [130]Valent P, Bonnet D, De Maria R, Lapidot T, Copland M, Melo JV, et al.: Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer 2012, 12:767-75.
  • [131]Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL, Quake SR, et al.: Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med 2012, 4:149ra118.
  • [132]Valent P, Lion T, Wolf D, Sillaber C, Agis H, Petzer A, et al.: Diagnostic algorithms, monitoring, prognostication, and therapy in chronic myeloid leukemia (CML): a proposal of the Austrian CML platform. Wien Klin Wochenschr 2008, 120:697-709.
  • [133]Renström J, Kröger M, Peschel C, Oostendorp RAJ: How the niche regulates hematopoietic stem cells. Chem Biol Interact 2010, 184:7-15.
  • [134]Wang P, Hou SX: Regulation of intestinal stem cells in mammals and Drosophila. J Cell Physiol 2009, 222:33-7.
  • [135]Nguyen LV, Vanner R, Dirks P, Eaves CJ: Cancer stem cells: an evolving concept. Nat Rev Cancer 2012, 12:133-43.
  • [136]Niebuhr B, Fischer M, Tager M, Cammenga J, Stocking C: Gatekeeper function of the RUNX1 transcription factor in acute leukemia. Blood Cells Mol Dis 2008, 40:211-8.
  • [137]Wang X, Tripodi J, Kremyanskaya M, Blouin A, Roda P, Hoffman R, et al.: BCR-ABL1 is a secondary event after JAK2V617F in patients with polycythemia vera who develop chronic myeloid leukemia. Blood 2013, 121:1238-9.
  • [138]Itzykson R, Solary E: An evolutionary perspective on chronic myelomonocytic leukemia. Leukemia 2013, 27:1441-50.
  • [139]Herrmann H: Phenotypic and functional characterization of CD34+/CD38−/CD123+ leukemic progenitor (stem) cells in AML: a flow cytometric approach. 50th ASH Annual Meeting and Exposition 2008.
  • [140]Morimoto K, Kim SJ, Tanei T, Shimazu K, Tanji Y, Taguchi T, et al.: Stem cell marker aldehyde dehydrogenase 1-positive breast cancers are characterized by negative estrogen receptor, positive human epidermal growth factor receptor type 2, and high Ki67 expression. Cancer Sci 2009, 100:1062-8.
  • [141]Korkaya H, Paulson A, Iovino F, Wicha MS: HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 2008, 27:6120-30.
  • [142]Hewish M, Chau I, Cunningham D: Insulin-like growth factor 1 receptor targeted therapeutics: novel compounds and novel treatment strategies for cancer medicine. Recent Patents Anticancer Drug Discov 2009, 4:54-72.
  • [143]Gotoh N: Control of stemness by fibroblast growth factor signaling in stem cells and cancer stem cells. Curr Stem Cell Res Ther 2009, 4:9-15.
  • [144]Koneczny I, Schulenburg A, Hudec X, Knofler M, Holzmann K, Piazza G, et al. Autocrine fibroblast growth factor 18 signaling mediates Wnt-dependent stimulation of CD44-positive human colorectal adenoma cells. Mol Carcinog. 2014. doi:10.1002/mc.22146.
  • [145]Jiang X, Lopez A, Holyoake T, Eaves A, Eaves C: Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia. Proc Natl Acad Sci U S A 1999, 96:12804-9.
  • [146]Jiang X, Fujisaki T, Nicolini F, Berger M, Holyoake T, Eisterer W, et al.: Autonomous multi-lineage differentiation in vitro of primitive CD34+ cells from patients with chronic myeloid leukemia. Leukemia 2000, 14:1112-21.
  • [147]Zhang SS, Han ZP, Jing YY, Tao SF, Li TJ, Wang H, et al.: CD133(+)CXCR4(+) colon cancer cells exhibit metastatic potential and predict poor prognosis of patients. BMC Med 2012, 10:85.
  • [148]Furusato B, Mohamed A, Uhlen M, Rhim JS: CXCR4 and cancer. Pathol Int 2010, 60:497-505.
  • [149]Tavor S, Petit I: Can inhibition of the SDF-1/CXCR4 axis eradicate acute leukemia? Semin Cancer Biol 2010, 20:178-85.
  • [150]Tavor S, Petit I, Porozov S, Avigdor A, Dar A, Leider-Trejo L, et al.: CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res 2004, 64:2817-24.
  • [151]Kumar SM, Zhang G, Bastian BC, Arcasoy MO, Karande P, Pushparajan A, et al.: Erythropoietin receptor contributes to melanoma cell survival in vivo. Oncogene 2012, 31:1649-60.
  • [152]Sinclair AM, Todd MD, Forsythe K, Knox SJ, Elliott S, Begley CG: Expression and function of erythropoietin receptors in tumors: implications for the use of erythropoiesis-stimulating agents in cancer patients. Cancer 2007, 110:477-88.
  • [153]Jelkmann W, Bohlius J, Hallek M, Sytkowski AJ: The erythropoietin receptor in normal and cancer tissues. Crit Rev Oncol Hematol 2008, 67:39-61.
  • [154]Gonen M, Sun Z, Figueroa ME, Patel JP, Abdel-Wahab O, Racevskis J, et al.: CD25 expression status improves prognostic risk classification in AML independent of established biomarkers: ECOG phase 3 trial, E1900. Blood 2012, 120:2297-306.
  • [155]Testa U, Riccioni R, Diverio D, Rossini A, Lo Coco F, Peschle C: Interleukin-3 receptor in acute leukemia. Leukemia 2004, 18:219-26.
  • [156]Lowenberg B, van Putten W, Theobald M, Gmur J, Verdonck L, Sonneveld P, et al.: Effect of priming with granulocyte colony-stimulating factor on the outcome of chemotherapy for acute myeloid leukemia. N Engl J Med 2003, 349:743-52.
  • [157]Frohling S, Schlenk RF, Breitruck J, Benner A, Kreitmeier S, Tobis K, et al.: Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood 2002, 100:4372-80.
  • [158]Hassan HT, Zander A: Stem cell factor as a survival and growth factor in human normal and malignant hematopoiesis. Acta Haematol 1996, 95:257-62.
  • [159]Uy GL, Rettig MP, Motabi IH, McFarland K, Trinkaus KM, Hladnik LM, et al.: A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood 2012, 119:3917-24.
  • [160]Hanumanthu VS, Pirruccello SJ: GCSF-R expression in myelodysplastic and myeloproliferative disorders and blast dysmaturation in CML. Am J Clin Pathol 2013, 140:155-64.
  • [161]Zhang Y, Guo Q, Zhao H, Zhao D, Wu X, Zhao W, et al.: Expression of CXCR4 is an independent prognostic factor for overall survival and progression-free survival in patients with myelodysplastic syndrome. Med Oncol 2013, 30:341.
  • [162]Nakata Y, Kimura A, Katoh O, Kawaishi K, Hyodo H, Abe K, et al.: c-kit point mutation of extracellular domain in patients with myeloproliferative disorders. Br J Haematol 1995, 91:661-3.
  • [163]Bogani C, Ponziani V, Guglielmelli P, Desterke C, Rosti V, Bosi A, et al.: Hypermethylation of CXCR4 promoter in CD34+ cells from patients with primary myelofibrosis. Stem Cells 2008, 26:1920-30.
  • [164]Smith BD, Kasamon YL, Kowalski J, Gocke C, Murphy K, Miller CB, et al.: K562/GM-CSF immunotherapy reduces tumor burden in chronic myeloid leukemia patients with residual disease on imatinib mesylate. Clin Cancer Res 2010, 16:338-47.
  • [165]Corbin AS, O’Hare T, Gu Z, Kraft IL, Eiring AM, Khorashad JS, et al.: KIT signaling governs differential sensitivity of mature and primitive CML progenitors to tyrosine kinase inhibitors. Cancer Res 2013, 73:5775-86.
  • [166]Beider K, Darash-Yahana M, Blaier O, Koren-Michowitz M, Abraham M, Wald H, et al.: Combination of imatinib with CXCR4 antagonist BKT140 overcomes the protective effect of stroma and targets CML in vitro and in vivo. Mol Cancer Ther 2014, 13:1155-69.
  • [167]Gaikwad AS, Donohue RE, Elghetany MT, Sheehan AM, Lu XY, Gramatges MM, et al.: Expression of CD25 is a specific and relatively sensitive marker for the Philadelphia chromosome (BCR-ABL1) translocation in pediatric B acute lymphoblastic leukemia. Int J Clin Exp Pathol 2014, 7:6225-30.
  • [168]Kim HP, Frankel AE, Hogge DE: A diphtheria toxin interleukin-3 fusion protein synergizes with tyrosine kinase inhibitors in killing leukemic progenitors from BCR/ABL positive acute leukemia. Leuk Res 2010, 34:1035-42.
  • [169]Parameswaran R, Yu M, Lim M, Groffen J, Heisterkamp N: Combination of drug therapy in acute lymphoblastic leukemia with a CXCR4 antagonist. Leukemia 2011, 25:1314-23.
  • [170]Peled A, Abraham M, Avivi I, Rowe JM, Beider K, Wald H, et al.: The high-affinity CXCR4 antagonist BKT140 is safe and induces a robust mobilization of human CD34+ cells in patients with multiple myeloma. Clin Cancer Res 2014, 20:469-79.
  • [171]LeBedis C, Chen K, Fallavollita L, Boutros T, Brodt P: Peripheral lymph node stromal cells can promote growth and tumorigenicity of breast carcinoma cells through the release of IGF-I and EGF. Int J Cancer 2002, 100:2-8.
  • [172]Korkaya H, Wicha MS: HER2 and breast cancer stem cells: more than meets the eye. Cancer Res 2013, 73:3489-93.
  • [173]Fillmore CM, Gupta PB, Rudnick JA, Caballero S, Keller PJ, Lander ES, et al.: Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling. Proc Natl Acad Sci U S A 2010, 107:21737-42.
  • [174]Sun L, Wu G, Willson JK, Zborowska E, Yang J, Rajkarunanayake I, et al.: Expression of transforming growth factor beta type II receptor leads to reduced malignancy in human breast cancer MCF-7 cells. J Biol Chem 1994, 269:26449-55.
  • [175]Pinto C, Di Fabio F, Siena S, Cascinu S, Rojas Llimpe FL, Ceccarelli C, et al.: Phase II study of cetuximab in combination with FOLFIRI in patients with untreated advanced gastric or gastroesophageal junction adenocarcinoma (FOLCETUX study). Ann Oncol 2007, 18:510-7.
  • [176]Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al.: Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 2010, 376:687-97.
  • [177]Shaib W, Mahajan R, El-Rayes B: Markers of resistance to anti-EGFR therapy in colorectal cancer. J Gastrointest Oncol 2013, 4:308-18.
  • [178]Kim J, Takeuchi H, Lam ST, Turner RR, Wang HJ, Kuo C, et al.: Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol 2005, 23:2744-53.
  • [179]Wolpin BM, Meyerhardt JA, Chan AT, Ng K, Chan JA, Wu K, et al.: Insulin, the insulin-like growth factor axis, and mortality in patients with nonmetastatic colorectal cancer. J Clin Oncol 2009, 27:176-85.
  • [180]Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Cespedes MV, et al.: Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell 2012, 22:571-84.
  • [181]Okamoto I, Araki J, Suto R, Shimada M, Nakagawa K, Fukuoka M: EGFR mutation in gefitinib-responsive small-cell lung cancer. Ann Oncol 2006, 17:1028-9.
  • [182]Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, et al.: Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007, 25:1960-6.
  • [183]Shan J, Shen J, Liu L, Xia F, Xu C, Duan G, et al.: Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology 2012, 56:1004-14.
  • [184]Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H, et al.: Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 1985, 313:144-7.
  • [185]Hermanson M, Funa K, Hartman M, Claesson-Welsh L, Heldin CH, Westermark B, et al.: Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 1992, 52:3213-9.
  • [186]Ehtesham M, Mapara KY, Stevenson CB, Thompson RC: CXCR4 mediates the proliferation of glioblastoma progenitor cells. Cancer Lett 2009, 274:305-12.
  • [187]Penuelas S, Anido J, Prieto-Sanchez RM, Folch G, Barba I, Cuartas I, et al.: TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 2009, 15:315-27.
  • [188]Joo KM, Jin J, Kim E, Ho Kim K, Kim Y, Gu Kang B, et al.: MET signaling regulates glioblastoma stem cells. Cancer Res 2012, 72:3828-38.
  • [189]Glaysher S, Bolton LM, Johnson P, Atkey N, Dyson M, Torrance C, et al.: Targeting EGFR and PI3K pathways in ovarian cancer. Br J Cancer 2013, 109:1786-94.
  • [190]Bookman MA, Darcy KM, Clarke-Pearson D, Boothby RA, Horowitz IR: Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a phase II trial of the Gynecologic Oncology Group. J Clin Oncol 2003, 21:283-90.
  • [191]Yeung TL, Leung CS, Wong KK, Samimi G, Thompson MS, Liu J, et al.: TGF-beta modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Res 2013, 73:5016-28.
  • [192]Dubrovska A, Elliott J, Salamone RJ, Telegeev GD, Stakhovsky AE, Schepotin IB, et al.: CXCR4 expression in prostate cancer progenitor cells. PLoS One 2012, 7:e31226.
  • [193]Singh S, Nannuru KC, Sadanandam A, Varney ML, Singh RK: CXCR1 and CXCR2 enhances human melanoma tumourigenesis, growth and invasion. Br J Cancer 2009, 100:1638-46.
  • [194]Karamboulas C, Ailles L: Developmental signaling pathways in cancer stem cells of solid tumors. Biochim Biophys Acta 1830, 2013:2481-95.
  • [195]Okuhashi Y, Itoh M, Nara N, Tohda S: Effects of combination of Notch inhibitor plus hedgehog inhibitor or Wnt inhibitor on growth of leukemia cells. Anticancer Res 2011, 31:893-6.
  • [196]Sinclair A, Latif AL, Holyoake TL: Targeting survival pathways in chronic myeloid leukaemia stem cells. Br J Pharmacol 2013, 169:1693-707.
  • [197]Abetov D, Mustapova Z, Saliev T, Bulanin D. Biomarkers and signaling pathways of colorectal cancer stem cells. Tumour Biol. 2015;doi:10.1007/s13277-015-3198-4.
  • [198]Takahashi-Yanaga F, Kahn M: Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res 2010, 16:3153-62.
  • [199]Dey A, Seshasayee D, Noubade R, French DM, Liu J, Chaurushiya MS, et al.: Loss of the tumor suppressor BAP1 causes myeloid transformation. Science 2012, 337:1541-6.
  • [200]Kleppe M, Levine RL: Targeting beta-catenin in CML: leukemia stem cells beware! Cell Stem Cell 2012, 10:351-3.
  • [201]Pannuti A, Foreman K, Rizzo P, Osipo C, Golde T, Osborne B, et al.: Targeting Notch to target cancer stem cells. Clin Cancer Res 2010, 16:3141-52.
  • [202]Merchant AA, Matsui W: Targeting hedgehog - a cancer stem cell pathway. Clin Cancer Res 2010, 16:3130-40.
  • [203]Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, et al.: Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996, 2:561-6.
  • [204]Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ: Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 2011, 121:396-409.
  • [205]Hamilton A, Elrick L, Myssina S, Copland M, Jorgensen H, Melo JV, et al.: BCR-ABL activity and its response to drugs can be determined in CD34+ CML stem cells by CrkL phosphorylation status using flow cytometry. Leukemia 2006, 20:1035-9.
  • [206]Wiseman DH, Greystoke BF, Somervaille TC: The variety of leukemic stem cells in myeloid malignancy. Oncogene 2013, 33(24):3091-8.
  • [207]Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM, et al.: Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 2011, 469:356-61.
  • [208]Ysebaert L, Chicanne G, Demur C, De Toni F, Prade-Houdellier N, Ruidavets JB, et al.: Expression of beta-catenin by acute myeloid leukemia cells predicts enhanced clonogenic capacities and poor prognosis. Leukemia 2006, 20:1211-6.
  • [209]Li Y, Welm B, Podsypanina K, Huang SX, Chamorro M, Zhang XM, et al.: Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci U S A 2003, 100:15853-8.
  • [210]Chien AJ, Moore EC, Lonsdorf AS, Kulikauskas RM, Rothberg BG, Berger AJ, et al.: Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc Natl Acad Sci U S A 2009, 106:1193-8.
  • [211]Yang W, Yan HX, Chen L, Liu Q, He YQ, Yu LX, et al.: Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res 2008, 68:4287-95.
  • [212]Gursel DB, Berry N, Boockvar JA: The contribution of Notch signaling to glioblastoma via activation of cancer stem cell self-renewal: the role of the endothelial network. Neurosurgery 2012, 70:N19-21.
  • [213]Sikandar SS, Pate KT, Anderson S, Dizon D, Edwards RA, Waterman ML, et al.: NOTCH signaling is required for formation and self-renewal of tumor-initiating cells and for repression of secretory cell differentiation in colon cancer. Cancer Res 2010, 70:1469-78.
  • [214]Lee CW, Simin K, Liu Q, Plescia J, Guha M, Khan A, et al.: A functional Notch-survivin gene signature in basal breast cancer. Breast Cancer Res 2008, 10:R97.
  • [215]Liu SL, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, et al.: Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006, 66:6063-71.
  • [216]Huang FT, Zhuan-Sun YX, Zhuang YY, Wei SL, Tang J, Chen WB, et al.: Inhibition of Hedgehog signaling depresses self-renewal of pancreatic cancer stem cells and reverses chemoresistance. J Gastroen Hepatol 2012, 27:43.
  • [217]Kawaguchi-Ihara N, Okuhashi Y, Itoh M, Murohashi I, Nara N, Tohda S: Promotion of the self-renewal capacity of human leukemia cells by sonic hedgehog protein. Anticancer Res 2011, 31:781-4.
  • [218]Ferruzzi P, Mennillo F, De Rosa A, Giordano C, Rossi M, Benedetti G, et al.: In vitro and in vivo characterization of a novel hedgehog signaling antagonist in human glioblastoma cell lines. Int J Cancer 2012, 131:E33-44.
  • [219]Mazumdar T, DeVecchio J, Shi T, Jones J, Agyeman A, Houghton JA: Hedgehog signaling drives cellular survival in human colon carcinoma cells. Cancer Res 2011, 71:1092-102.
  • [220]Phelps RA, Chidester S, Dehghanizadeh S, Phelps J, Sandoval IT, Rai K, et al.: A two-step model for colon adenoma initiation and progression caused by APC loss. Cell 2009, 137:623-34.
  • [221]Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, et al.: Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol 2009, 7:e1000121.
  • [222]Kroon P, Berry PA, Stower MJ, Rodrigues G, Mann VM, Simms M, et al.: JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells. Cancer Res 2013, 73:5288-98.
  • [223]Kanno H, Sato H, Yokoyama T-A, Yoshizumi T, Yamada S: The VHL tumor suppressor protein regulates tumorigenicity of U87-derived glioma stem-like cells by inhibiting the JAK/STAT signaling pathway. Int J Oncol 2013, 42:881-6.
  • [224]Krause DS, Lazarides K, von Andrian UH, Van Etten RA: Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 2006, 12:1175-80.
  • [225]Nair RR, Tolentino J, Hazlehurst LA: The bone marrow microenvironment as a sanctuary for minimal residual disease in CML. Biochem Pharmacol 2010, 80:602-12.
  • [226]Potten CS, Loeffler M: Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 1990, 110:1001-20.
  • [227]Jones DL, Wagers AJ: No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 2008, 9:11-21.
  • [228]Rosel M, Khaldoyanidi S, Zawadzki V, Zoller M: Involvement of CD44 variant isoform v10 in progenitor cell adhesion and maturation. Exp Hematol 1999, 27:698-711.
  • [229]Alakel N, Jing D, Muller K, Bornhauser M, Ehninger G, Ordemann R: Direct contact with mesenchymal stromal cells affects migratory behavior and gene expression profile of CD133(+) hematopoietic stem cells during ex vivo expansion. Exp Hematol 2009, 37(4):504-13.
  • [230]Raveh S, Gavert N, Ben-Ze'ev A: L1 cell adhesion molecule (L1CAM) in invasive tumors. Cancer Lett 2009, 282(2):137-45.
  • [231]Gavert N, Ben-Shmuel A, Raveh S, Ben-Ze’ev A: L1-CAM in cancerous tissues. Expert Opin Biol Ther 2008, 8:1749-57.
  • [232]Bao S, Wu Q, Li Z, Sathornsumetee S, Wang H, McLendon RE, et al.: Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 2008, 68:6043-8.
  • [233]Kang Y, Massague J: Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 2004, 118:277-9.
  • [234]Peled A, Hardan I, Trakhtenbrot L, Gur E, Magid M, Darash-Yahana M, et al.: Immature leukemic CD34(+)CXCR4(+) cells from CML patients have lower integrin-dependent migration and adhesion in response to the chemokine SDF-1. Stem Cells 2002, 20:259-66.
  • [235]Zhang B, Ho YW, Huang Q, Maeda T, Lin A, Lee SU, et al.: Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer Cell 2012, 21:577-92.
  • [236]Scadden DT: The stem-cell niche as an entity of action. Nature 2006, 441:1075-9.
  • [237]Greenberger JS: The hematopoietic microenvironment. Crit Rev Oncol Hematol 1991, 11:65-84.
  • [238]Torok-Storb B: Cellular interactions. Blood 1988, 72:373-85.
  • [239]Mayani H, Guilbert LJ, Janowska-Wieczorek A: Biology of the hemopoietic microenvironment. Eur J Haematol 1992, 49:225-33.
  • [240]Springer TA: Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994, 76:301-14.
  • [241]Fidler IJ: The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 2003, 3:453-8.
  • [242]Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA: Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood 1996, 88:146-57.
  • [243]Schulenburg A, Cech P, Herbacek I, Marian B, Wrba F, Valent P, et al.: CD44-positive colorectal adenoma cells express the potential stem cell markers musashi antigen (msi1) and ephrin B2 receptor (EphB2). J Pathol 2007, 213:152-60.
  • [244]De Craene B, Berx G: Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 2013, 13:97-110.
  • [245]Savagner P: The epithelial-mesenchymal transition (EMT) phenomenon. Ann Oncol 2010, 21(Suppl 7):vii89-92.
  • [246]Durig J, Rosenthal C, Elmaagacli A, Heyworth C, Halfmeyer K, Kasper C, et al.: Biological effects of stroma-derived factor-1 alpha on normal and CML CD34+ haemopoietic cells. Leukemia 2000, 14:1652-60.
  • [247]Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, et al.: Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 2013, 502:637-43.
  • [248]Scadden DT: Nice neighborhood: emerging concepts of the stem cell niche. Cell 2014, 157:41-50.
  • [249]Morrison SJ, Scadden DT: The bone marrow niche for haematopoietic stem cells. Nature 2014, 505:327-34.
  • [250]Konopleva M, Tabe Y, Zeng Z, Andreeff M: Therapeutic targeting of microenvironmental interactions in leukemia: mechanisms and approaches. Drug Resist Updat 2009, 12:103-13.
  • [251]Sullivan WJ, Christofk HR: The metabolic milieu of metastases. Cell 2015, 160:363-4.
  • [252]Xiang L, Gilkes DM, Hu H, Takano N, Luo W, Lu H, et al.: Hypoxia-inducible factor 1 mediates TAZ expression and nuclear localization to induce the breast cancer stem cell phenotype. Oncotarget 2014, 5:12509-27.
  • [253]Clarke L, van der Kooy D: Low oxygen enhances primitive and definitive neural stem cell colony formation by inhibiting distinct cell death pathways. Stem Cells 2009, 27:1879-86.
  • [254]Moreno-Manzano V, Rodriguez-Jimenez FJ, Acena-Bonilla JL, Fustero-Lardies S, Erceg S, Dopazo J, et al.: FM19G11, a new hypoxia-inducible factor (HIF) modulator, affects stem cell differentiation status. J Biol Chem 2010, 285:1333-42.
  • [255]Levesque JP, Winkler IG, Hendy J, Williams B, Helwani F, Barbier V, et al.: Hematopoietic progenitor cell mobilization results in hypoxia with increased hypoxia-inducible transcription factor-1 alpha and vascular endothelial growth factor A in bone marrow. Stem Cells 2007, 25:1954-65.
  • [256]Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al.: Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004, 10:858-64.
  • [257]Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, et al.: Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 2005, 9:617-28.
  • [258]Chen Y, De Marco MA, Graziani I, Gazdar AF, Strack PR, Miele L, et al.: Oxygen concentration determines the biological effects of NOTCH-1 signaling in adenocarcinoma of the lung. Cancer Res 2007, 67:7954-9.
  • [259]Gilbertson RJ, Rich JN: Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 2007, 7:733-6.
  • [260]Nieborowska-Skorska M, Kopinski PK, Ray R, Hoser G, Ngaba D, Flis S, et al.: Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood 2012, 119:4253-63.
  • [261]Kantner HP, Warsch W, Delogu A, Bauer E, Esterbauer H, Casanova E, et al.: ETV6/RUNX1 induces reactive oxygen species and drives the accumulation of DNA damage in B cells. Neoplasia 2013, 15:1292-300.
  • [262]Warsch W, Grundschober E, Berger A, Gille L, Cerny-Reiterer S, Tigan AS, et al.: STAT5 triggers BCR-ABL1 mutation by mediating ROS production in chronic myeloid leukaemia. Oncotarget 2012, 3:1669-87.
  • [263]Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, et al.: HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 2006, 20:557-70.
  • [264]Keith B, Simon MC: Hypoxia-inducible factors, stem cells, and cancer. Cell 2007, 129:465-72.
  • [265]Horton SJ, Huntly BJ: Recent advances in acute myeloid leukemia stem cell biology. Haematologica 2012, 97:966-74.
  • [266]Oh SH, Park TS, Kim HR, Lee JY, Kim JH, Shin JH, et al.: Chronic myelogenous leukemia showing biphenotypic blast crisis followed by lineage switch to B lymphoblastic leukemia. Leuk Res 2009, 33:e195-8.
  • [267]Schmidt CA, Przybylski GK: What can we learn from leukemia as for the process of lineage commitment in hematopoiesis? Int Rev Immunol 2001, 20:107-15.
  • [268]Reid AG, De Melo VA, Elderfield K, Clark I, Marin D, Apperley J, et al.: Phenotype of blasts in chronic myeloid leukemia in blastic phase-analysis of bone marrow trephine biopsies and correlation with cytogenetics. Leuk Res 2009, 33:418-25.
  • [269]Bettelheim P, Lutz D, Majdic O, Paietta E, Haas O, Linkesch W, et al.: Cell lineage heterogeneity in blast crisis of chronic myeloid leukaemia. Br J Haematol 1985, 59:395-409.
  • [270]Goradia A, Bayerl M, Cornfield D: The 8p11 myeloproliferative syndrome: review of literature and an illustrative case report. Int J Clin Exp Pathol 2008, 1:448-56.
  • [271]Tzankov A, Sotlar K, Muhlematter D, Theocharides A, Went P, Jotterand M, et al.: Systemic mastocytosis with associated myeloproliferative disease and precursor B lymphoblastic leukaemia with t(13;13)(q12;q22) involving FLT3. J Clin Pathol 2008, 61:958-61.
  • [272]Sperr WR, Horny HP, Valent P: Spectrum of associated clonal hematologic non-mast cell lineage disorders occurring in patients with systemic mastocytosis. Int Arch Allergy Immunol 2002, 127:140-2.
  • [273]Streubel B, Chott A, Huber D, Exner M, Jager U, Wagner O, et al.: Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med 2004, 351:250-9.
  • [274]Gunsilius E, Duba HC, Petzer AL, Kahler CM, Grunewald K, Stockhammer G, et al.: Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 2000, 355:1688-91.
  • [275]Wu J, Huang L, Huang M, Liu W, Zheng M, Cao Y, et al.: Dominant contribution of malignant endothelial cells to endotheliopoiesis in chronic myeloid leukemia. Exp Hematol 2009, 37:87-91.
  • [276]Mirshahi P, Rafii A, Vincent L, Berthaut A, Varin R, Kalantar G, et al.: Vasculogenic mimicry of acute leukemic bone marrow stromal cells. Leukemia 2009, 23:1039-48.
  • [277]Hauswirth AW, Florian S, Printz D, Sotlar K, Krauth MT, Fritsch G, et al.: Expression of the target receptor CD33 in CD34+/CD38-/CD123+ AML stem cells. Eur J Clin Invest 2007, 37:73-82.
  • [278]Pearce DJ, Taussig DC, Bonnet D: Implications of the expression of myeloid markers on normal and leukemic stem cells. Cell Cycle 2006, 5:271-3.
  • [279]Larson RA, Boogaerts M, Estey E, Karanes C, Stadtmauer EA, Sievers EL, et al.: Antibody-targeted chemotherapy of older patients with acute myeloid leukemia in first relapse using Mylotarg (gemtuzumab ozogamicin). Leukemia 2002, 16:1627-36.
  • [280]Sievers EL, Larson RA, Stadtmauer EA, Estey E, Lowenberg B, Dombret H, et al.: Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol 2001, 19:3244-54.
  • [281]Feldman E, Kalaycio M, Weiner G, Frankel S, Schulman P, Schwartzberg L, et al.: Treatment of relapsed or refractory acute myeloid leukemia with humanized anti-CD33 monoclonal antibody HuM195. Leukemia 2003, 17:314-8.
  • [282]Sievers EL, Appelbaum FR, Spielberger RT, Forman SJ, Flowers D, Smith FO, et al.: Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 1999, 93:3678-84.
  • [283]Majeti R: Monoclonal antibody therapy directed against human acute myeloid leukemia stem cells. Oncogene 2011, 30:1009-19.
  • [284]Mahon F-X, Rea D, Guilhot J, Guilhot F, Huguet F, Nicolini F, et al.: Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 2010, 11:1029-35.
  • [285]Pfreundschuh M, Schubert J, Ziepert M, Schmits R, Mohren M, Lengfelder E, et al.: Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60). Lancet Oncol 2008, 9:105-16.
  • [286]Patz M, Isaeva P, Forcob N, Muller B, Frenzel LP, Wendtner CM, et al.: Comparison of the in vitro effects of the anti-CD20 antibodies rituximab and GA101 on chronic lymphocytic leukaemia cells. Br J Haematol 2011, 152:295-306.
  • [287]Boyd K, Dearden CE: Alemtuzumab in the treatment of chronic lymphocytic lymphoma. Expert Rev Anticancer Ther 2008, 8:525-33.
  • [288]Cunningham MP, Thomas H, Marks C, Green M, Fan Z, Modjtahedi H: Co-targeting the EGFR and IGF-IR with anti-EGFR monoclonal antibody ICR62 and the IGF-IR tyrosine kinase inhibitor NVP-AEW541 in colorectal cancer cells. Int J Oncol 2008, 33:1107-13.
  • [289]Heinrich MC: Imatinib treatment of metastatic GIST: don’t stop (believing). Lancet Oncol 2010, 11:910-1.
  • [290]Burris HA 3rd, Hurwitz HI, Dees EC, Dowlati A, Blackwell KL, O’Neil B, et al.: Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol 2005, 23:5305-13.
  • [291]Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD, Hainsworth JD, et al.: Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med 2012, 366:2171-9.
  • [292]Ribas A, Flaherty KT: BRAF targeted therapy changes the treatment paradigm in melanoma. Nat Rev Clin Oncol 2011, 8:426-33.
  • [293]Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al.: Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 2013, 369:32-42.
  • [294]Galanis E, Buckner JC, Maurer MJ, Kreisberg JI, Ballman K, Boni J, et al.: Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 2005, 23:5294-304.
  • [295]Hudes GR: mTOR as a target for therapy of renal cancer. Clin Adv Hematol Oncol 2007, 5:772-4.
  • [296]Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al.: RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011, 478:524-8.
  • [297]Fons P, Herault JP, Delesque N, Tuyaret J, Bono F, Herbert JM: VEGF-R2 and neuropilin-1 are involved in VEGF-A-induced differentiation of human bone marrow progenitor cells. J Cell Physiol 2004, 200:351-9.
  • [298]Shervington A, Lu C: Expression of multidrug resistance genes in normal and cancer stem cells. Cancer Invest 2008, 26:535-42.
  • [299]Gottesman MM: Mechanisms of cancer drug resistance. Annu Rev Med 2002, 53:615-27.
  • [300]Engler JR, Frede A, Saunders V, Zannettino A, White DL, Hughes TP: The poor response to imatinib observed in CML patients with low OCT-1 activity is not attributable to lower uptake of imatinib into their CD34+ cells. Blood 2010, 116:2776-8.
  • [301]Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG: Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res 2005, 65:6207-19.
  • [302]Nakai E, Park K, Yawata T, Chihara T, Kumazawa A, Nakabayashi H, et al.: Enhanced MDR1 expression and chemoresistance of cancer stem cells derived from glioblastoma. Cancer Invest 2009, 27:901-8.
  • [303]Yamamoto A, Shofuda T, Islam MO, Nakamura Y, Yamasaki M, Okano H, et al.: ABCB1 is predominantly expressed in human fetal neural stem/progenitor cells at an early development stage. J Neurosci Res 2009, 87:2615-23.
  • [304]Jin W, Liu Y, Xu SG, Yin WJ, Li JJ, Yang JM, et al.: UHRF1 inhibits MDR1 gene transcription and sensitizes breast cancer cells to anticancer drugs. Breast Cancer Res Treat 2010, 124:39-48.
  • [305]Brendel C, Scharenberg C, Dohse M, Robey RW, Bates SE, Shukla S, et al.: Imatinib mesylate and nilotinib (AMN107) exhibit high-affinity interaction with ABCG2 on primitive hematopoietic stem cells. Leukemia 2007, 21:1267-75.
  • [306]Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, et al.: Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 2001, 98:2301-7.
  • [307]Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT, et al.: PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006, 441:518-22.
  • [308]Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, et al.: Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006, 441:475-82.
  • [309]Hess CJ, Berkhof J, Denkers F, Ossenkoppele GJ, Schouten JP, Oudejans JJ, et al.: Activated intrinsic apoptosis pathway is a key related prognostic parameter in acute myeloid leukemia. J Clin Oncol 2007, 25:1209-15.
  • [310]Harper LJ, Costea DE, Gammon L, Fazil B, Biddle A, Mackenzie IC: Normal and malignant epithelial cells with stem-like properties have an extended G2 cell cycle phase that is associated with apoptotic resistance. BMC Cancer 2010, 10:166.
  • [311]Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al.: MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005, 352:997-1003.
  • [312]Skladanowski A, Bozko P, Sabisz M: DNA structure and integrity checkpoints during the cell cycle and their role in drug targeting and sensitivity of tumor cells to anticancer treatment. Chem Rev 2009, 109:2951-73.
  • [313]Lane SW, Scadden DT, Gilliland DG: The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 2009, 114:1150-7.
  • [314]Teitz-Tennenbaum S, Wicha MS, Chang AE, Li Q: Targeting cancer stem cells via dendritic-cell vaccination. Oncoimmunology 2012, 1:1401-3.
  • [315]Brune M, Castaigne S, Catalano J, Gehlsen K, Ho AD, Hofmann WK, et al.: Improved leukemia-free survival after postconsolidation immunotherapy with histamine dihydrochloride and interleukin-2 in acute myeloid leukemia: results of a randomized phase 3 trial. Blood 2006, 108:88-96.
  • [316]Essers MA, Trumpp A: Targeting leukemic stem cells by breaking their dormancy. Mol Oncol 2010, 4:443-50.
  • [317]Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al.: Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010, 363:711-23.
  • [318]Topalian SL, Drake CG, Pardoll DM: Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 2012, 24:207-12.
  • [319]Weber DM, Chen C, Niesvizky R, Wang M, Belch A, Stadtmauer EA, et al.: Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 2007, 357:2133-42.
  • [320]Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, et al.: Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 2006, 66:7843-8.
  • [321]Wulf GG, Wang RY, Kuehnle I, Weidner D, Marini F, Brenner MK, et al.: A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood 2001, 98:1166-73.
  • [322]Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, et al.: A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 2004, 101:14228-33.
  • [323]Peter B, Cerny-Reiterer S, Hadzijusufovic E, Schuch K, Stefanzl G, Eisenwort G, et al.: The pan-Bcl-2 blocker obatoclax promotes the expression of Puma, Noxa, and Bim mRNA and induces apoptosis in neoplastic mast cells. J Leukoc Biol 2014, 95:95-104.
  • [324]Moser C, Lang SA, Kainz S, Gaumann A, Fichtner-Feigl S, Koehl GE, et al.: Blocking heat shock protein-90 inhibits the invasive properties and hepatic growth of human colon cancer cells and improves the efficacy of oxaliplatin in p53-deficient colon cancer tumors in vivo. Mol Cancer Ther 2007, 6:2868-78.
  • [325]Clappier E, Gerby B, Sigaux F, Delord M, Touzri F, Hernandez L, et al.: Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse. J Exp Med 2011, 208:653-61.
  • [326]Hochhaus A: Chronic myelogenous leukemia (CML): resistance to tyrosine kinase inhibitors. Ann Oncol 2006, 17(Suppl 10):x274-9.
  • [327]Druker BJ: Translation of the Philadelphia chromosome into therapy for CML. Blood 2008, 112:4808-17.
  • [328]Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, et al.: Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001, 293:876-80.
  • [329]Carter TA, Wodicka LM, Shah NP, Velasco AM, Fabian MA, Treiber DK, et al.: Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc Natl Acad Sci U S A 2005, 102:11011-6.
  • [330]Deininger M: Resistance and relapse with imatinib in CML: causes and consequences. J Natl Compr Canc Netw 2008, 6(Suppl 2):S11-21.
  • [331]Quintas-Cardama A, Kantarjian HM, Cortes JE: Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control 2009, 16:122-31.
  • [332]Andreeff M, Konopleva M: Mechanisms of drug resistance in AML. Cancer Treat Res 2002, 112:237-62.
  • [333]Thomas X, Campos L, Le QH, Guyotat D: Heat shock proteins and acute leukemias. Hematology 2005, 10:225-35.
  • [334]Haase D, Germing U, Schanz J, Pfeilstocker M, Nosslinger T, Hildebrandt B, et al.: New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood 2007, 110:4385-95.
  • [335]Mrozek K: Cytogenetic, molecular genetic, and clinical characteristics of acute myeloid leukemia with a complex karyotype. Semin Oncol 2008, 35:365-77.
  • [336]Cortes JE, Talpaz M, Giles F, O’Brien S, Rios MB, Shan J, et al.: Prognostic significance of cytogenetic clonal evolution in patients with chronic myelogenous leukemia on imatinib mesylate therapy. Blood 2003, 101:3794-800.
  • [337]Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, et al.: European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood 2013, 122:872-84.
  • [338]Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ, Flinn I, et al.: Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med 2012, 367:2075-88.
  • [339]Blay JY: A decade of tyrosine kinase inhibitor therapy: historical and current perspectives on targeted therapy for GIST. Cancer Treat Rev 2011, 37:373-84.
  • [340]Kanda T, Ishikawa T, Takahashi T, Nishida T: Nilotinib for treatment of gastrointestinal stromal tumors: out of the equation? Expert Opin Pharmacother 2013, 14:1859-67.
  • [341]Iorio N, Sawaya RA, Friedenberg FK: Review article: the biology, diagnosis and management of gastrointestinal stromal tumours. Aliment Pharmacol Ther 2014, 39(12):1376-86.
  • [342]Shoji S, Nakano M, Sato H, Tang XY, Osamura YR, Terachi T, et al.: The current status of tailor-made medicine with molecular biomarkers for patients with clear cell renal cell carcinoma. Clin Exp Metastasis 2014, 31:111-34.
  • [343]Motzer RJ, Hutson TE, Cella D, Reeves J, Hawkins R, Guo J, et al.: Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med 2013, 369:722-31.
  • [344]Plosker GL, Figgitt DP: Rituximab: a review of its use in non-Hodgkin’s lymphoma and chronic lymphocytic leukaemia. Drugs 2003, 63:803-43.
  • [345]Cheson BD, Leonard JP: Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. N Engl J Med 2008, 359:613-26.
  • [346]Agarwal A, Fleischman AG, Petersen CL, MacKenzie R, Luty S, Loriaux M, et al.: Effects of plerixafor in combination with BCR-ABL kinase inhibition in a murine model of CML. Blood 2012, 120:2658-68.
  • [347]Saglio G, Kim DW, Issaragrisil S, le Coutre P, Etienne G, Lobo C, et al.: Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med 2010, 362:2251-9.
  • [348]Khoury HJ, Cortes JE, Kantarjian HM, Gambacorti-Passerini C, Baccarani M, Kim DW, et al.: Bosutinib is active in chronic phase chronic myeloid leukemia after imatinib and dasatinib and/or nilotinib therapy failure. Blood 2012, 119:3403-12.
  • [349]Damon LE: Mobilization of hematopoietic stem cells into the peripheral blood. Expert Rev Hematol 2009, 2:717-33.
  • [350]Uy GL, Rettig MP, Cashen AF: Plerixafor, a CXCR4 antagonist for the mobilization of hematopoietic stem cells. Expert Opin Biol Ther 2008, 8:1797-804.
  • [351]Hadzijusufovic E, Herndlhofer S, Aichberger KJ, Ghanim V, Suppan V, Cerny-Reiterer S, et al.: Nilotinib exerts direct effects on vascular endothelial cells and may act as a co-trigger of atherosclerosis in patients with Ph plus CML. Blood 2011, 118:1183-4.
  • [352]Perl A, Carroll M: BCR-ABL kinase is dead; long live the CML stem cell. J Clin Invest 2011, 121:22-5.
  • [353]Hamilton A, Helgason GV, Schemionek M, Zhang B, Myssina S, Allan EK, et al.: Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood 2012, 119:1501-10.
  文献评价指标  
  下载次数:0次 浏览次数:5次