期刊论文详细信息
Journal of Neuroinflammation
Treatment with AMD3100 attenuates the microglial response and improves outcome after experimental stroke
Karsten Ruscher2  Tadeusz Wieloch2  Ana Rita Antunes2  Gerlinde van der Maten2  Helene L Walter1 
[1]Department of Neurology, University Hospital Cologne, Kerpener Straße 62, Cologne, 50937, Germany
[2]Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, Lund, S-22184, Sweden
关键词: Stroke recovery;    Microglia;    Inflammation;    Fractalkine;    Cytokine;    CX3CR1;    Chemokine receptor;   
Others  :  1137617
DOI  :  10.1186/s12974-014-0232-1
 received in 2014-08-13, accepted in 2014-12-27,  发布年份 2015
PDF
【 摘 要 】

Background

Recovery of lost neurological function after stroke is limited and dependent on multiple mechanisms including inflammatory processes. Selective pharmacological modulation of inflammation might be a promising approach to improve stroke outcome.

Methods

We used 1,1′-[1,4-phenylenebis(methylene)]bis[1,4,8,11-tetraazacyclotetradecane] (AMD3100), an antagonist to the C-X-C chemokine receptor type 4 (CXCR4) and potential allosteric agonist to CXCR7, administered to mice twice daily from day 2 after induction of photothrombosis (PT). In addition to functional outcome, the dynamics of post-stroke microglia response were monitored in vivo by 2-photon-laser-microscopy in heterozygous transgenic CX3CR1-green fluorescent protein (GFP) mice (CX3CR1GFP/+) and complemented with analyses for fractalkine (FKN) and pro-inflammatory cytokines.

Results

We found a significantly enhanced recovery and modified microglia activation without affecting infarct size in mice treated with AMD3100 after PT. AMD3100 treatment significantly reduced the number of microglia in the peri-infarct area accompanied by stabilization of soma size and ramified cell morphology. Within the ischemic infarct core of AMD3100 treated wild-type mice we obtained significantly reduced levels of the endogenous CX3CR1 ligand FKN and the pro-inflammatory cytokines interleukin (IL)-1β and IL-6. Interestingly, in CX3CR1-deficient mice (homozygous transgenic CX3CR1-GFP mice) subjected to PT, the levels of FKN were significantly lower compared to their wild-type littermates. Moreover, AMD3100 treatment did not induce any relevant changes of cytokine levels in CX3CR1 deficient mice.

Conclusion

After AMD3100 treatment, attenuation of microglia activation contributes to enhanced recovery of lost neurological function in experimental stroke possibly due to a depression of FKN levels in the brain. We further hypothesize that this mechanism is dependent on a functional receptor CX3CR1.

【 授权许可】

   
2015 Walter et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150317105604665.pdf 2498KB PDF download
Figure 9. 25KB Image download
Figure 8. 29KB Image download
Figure 7. 158KB Image download
Figure 6. 187KB Image download
Figure 5. 169KB Image download
Figure 4. 107KB Image download
Figure 3. 36KB Image download
20150407074029414.pdf 1339KB PDF download
Figure 1. 30KB Image download
【 图 表 】

Figure 1.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Dancause N, Nudo RJ: Shaping plasticity to enhance recovery after injury. Prog Brain Res. 2011, 192:273-95.
  • [2]Brewer L, Horgan F, Hickey A, Williams D: Stroke rehabilitation: recent advances and future therapies. QJM. 2013, 106:11-25.
  • [3]Ruscher K, Kuric E, Liu Y, Walter HL, Issazadeh-Navikas S, Englund E, et al.: Inhibition of CXCL12 signaling attenuates the postischemic immune response and improves functional recovery after stroke. J Cereb Blood Flow Metab. 2013, 33:1225-34.
  • [4]Subramanian S, Zhang B, Kosaka Y, Burrows GG, Grafe MR, Vandenbark AA, et al.: Recombinant T cell receptor ligand treats experimental stroke. Stroke. 2009, 40:2539-45.
  • [5]Saleh A, Schroeter M, Jonkmanns C, Hartung HP, Modder U, Jander S: In vivo MRI of brain inflammation in human ischaemic stroke. Brain. 2004, 127:1670-7.
  • [6]Cramer SC: Repairing the human brain after stroke. II Restorative therapies. Ann Neurol. 2008, 63:549-60.
  • [7]Denes A, Ferenczi S, Kovacs KJ: Systemic inflammatory challenges compromise survival after experimental stroke via augmenting brain inflammation, blood–brain barrier damage and brain oedema independently of infarct size. J Neuroinflammation. 2011, 8:164. BioMed Central Full Text
  • [8]Chapman GA, Moores K, Harrison D, Campbell CA, Stewart BR, Strijbos PJ: Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J Neurosci. 2000, 20:RC87.
  • [9]Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, et al.: Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A. 1998, 95:10896-901.
  • [10]Hatori K, Nagai A, Heisel R, Ryu JK, Kim SU: Fractalkine and fractalkine receptors in human neurons and glial cells. J Neurosci Res. 2002, 69:418-26.
  • [11]Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, et al.: A new class of membrane-bound chemokine with a CX3C motif. Nature. 1997, 385:640-4.
  • [12]Tarozzo G, Campanella M, Ghiani M, Bulfone A, Beltramo M: Expression of fractalkine and its receptor, CX3CR1, in response to ischaemia-reperfusion brain injury in the rat. Eur J Neurosci. 2002, 15:1663-8.
  • [13]Cook A, Hippensteel R, Shimizu S, Nicolai J, Fatatis A, Meucci O: Interactions between chemokines: regulation of fractalkine/CX3CL1 homeostasis by SDF/CXCL12 in cortical neurons. J Biol Chem. 2010, 285:10563-71.
  • [14]Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, et al.: Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci. 2006, 9:917-24.
  • [15]Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, et al.: Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol. 2000, 20:4106-14.
  • [16]Nishiyori A, Minami M, Ohtani Y, Takami S, Yamamoto J, Kawaguchi N, et al.: Localization of fractalkine and CX3CR1 mRNAs in rat brain: does fractalkine play a role in signaling from neuron to microglia? FEBS Lett. 1998, 429:167-72.
  • [17]Meucci O, Fatatis A, Simen AA, Miller RJ: Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc Natl Acad Sci U S A. 2000, 97:8075-80.
  • [18]Boehme SA, Lio FM, Maciejewski-Lenoir D, Bacon KB, Conlon PJ: The chemokine fractalkine inhibits Fas-mediated cell death of brain microglia. J Immunol. 2000, 165:397-403.
  • [19]Denes A, Ferenczi S, Halasz J, Kornyei Z, Kovacs KJ: Role of CX3CR1 (fractalkine receptor) in brain damage and inflammation induced by focal cerebral ischemia in mouse. J Cereb Blood Flow Metab. 2008, 28:1707-21.
  • [20]Cipriani R, Villa P, Chece G, Lauro C, Paladini A, Micotti E, et al.: CX3CL1 is neuroprotective in permanent focal cerebral ischemia in rodents. J Neurosci. 2011, 31:16327-35.
  • [21]Zhang L, Schallert T, Zhang ZG, Jiang Q, Arniego P, Li Q, et al.: A test for detecting long-term sensorimotor dysfunction in the mouse after focal cerebral ischemia. J Neurosci Methods. 2002, 117:207-14.
  • [22]Farr TD, Liu L, Colwell KL, Whishaw IQ, Metz GA: Bilateral alteration in stepping pattern after unilateral motor cortex injury: a new test strategy for analysis of skilled limb movements in neurological mouse models. J Neurosci Methods. 2006, 153:104-13.
  • [23]Kucharz K, Wieloch T, Toresson H: Rapid fragmentation of the endoplasmic reticulum in cortical neurons of the mouse brain in situ following cardiac arrest. J Cereb Blood Flow Metab. 2011, 31:1663-7.
  • [24]Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, et al.: Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke. 2009, 40:1849-57.
  • [25]Kuric E, Ruscher K: Dynamics of major histocompatibility complex class II-positive cells in the postischemic brain - influence of levodopa treatment. J Neuroinflammation. 2014, 11:145. BioMed Central Full Text
  • [26]Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD: Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol. 1985, 17:497-504.
  • [27]Schroeter M, Jander S, Stoll G: Non-invasive induction of focal cerebral ischemia in mice by photothrombosis of cortical microvessels: characterization of inflammatory responses. J Neurosci Methods. 2002, 117:43-9.
  • [28]Yang G, Pan F, Parkhurst CN, Grutzendler J, Gan WB: Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nature Protoc. 2010, 5:201-8.
  • [29]Kozlowski C, Weimer RM: An automated method to quantify microglia morphology and application to monitor activation state longitudinally in vivo. PLoS One. 2012, 7:e31814.
  • [30]Otsu N: A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 1979, 9:62-6.
  • [31]Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR: A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab. 1990, 10:290-3.
  • [32]Ruscher K, Shamloo M, Rickhag M, Ladunga I, Soriano L, Gisselsson L, et al.: The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke. Brain. 2011, 134:732-46.
  • [33]Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y: Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke. 2001, 32:1208-15.
  • [34]Huang J, Li Y, Tang Y, Tang G, Yang GY, Wang Y: CXCR4 antagonist AMD3100 protects blood–brain barrier integrity and reduces inflammatory response after focal ischemia in mice. Stroke. 2012, 44:190-7.
  • [35]Ohab JJ, Fleming S, Blesch A, Carmichael ST: A neurovascular niche for neurogenesis after stroke. J Neurosci. 2006, 26:13007-16.
  • [36]Zendedel A, Nobakht M, Bakhtiyari M, Beyer C, Kipp M, Baazm M, et al.: Stromal cell-derived factor-1 alpha (SDF-1alpha) improves neural recovery after spinal cord contusion in rats. Brain Res. 2012, 1473:214-26.
  • [37]Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, et al.: Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells. 2006, 24:739-47.
  • [38]Fumagalli S, Perego C, Ortolano F, De Simoni MG: CX3CR1 deficiency induces an early protective inflammatory environment in ischemic mice. Glia. 2013, 61:827-42.
  • [39]Hanisch UK: Proteins in microglial activation - inputs and outputs by subsets. Curr Prot Pept Sci. 2013, 14:3-15.
  • [40]Chapman GA, Moores KE, Gohil J, Berkhout TA, Patel L, Green P, et al.: The role of fractalkine in the recruitment of monocytes to the endothelium. Eur J Pharmacol. 2000, 392:189-95.
  • [41]Kierdorf K, Prinz M: Factors regulating microglia activation. Front Cell Neurosci. 2013, 7:44.
  • [42]Mizuno T, Kawanokuchi J, Numata K, Suzumura A: Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res. 2003, 979:65-70.
  • [43]Kalatskaya I, Berchiche YA, Gravel S, Limberg BJ, Rosenbaum JS, Heveker N: AMD3100 is a CXCR7 ligand with allosteric agonist properties. Mol Pharmacol. 2009, 75:1240-7.
  • [44]Chalasani SH, Baribaud F, Coughlan CM, Sunshine MJ, Lee VM, Doms RW, et al.: The chemokine stromal cell-derived factor-1 promotes the survival of embryonic retinal ganglion cells. J Neurosci. 2003, 23:4601-12.
  • [45]Fumagalli S, Coles JA, Ejlerskov P, Ortolano F, Bushell TJ, Brewer JM, et al.: In vivo real-time multiphoton imaging of T lymphocytes in the mouse brain after experimental stroke. Stroke. 2011, 42:1429-36.
  • [46]Liesz A, Zhou W, Mracsko E, Karcher S, Bauer H, Schwarting S, et al.: Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain. 2011, 134:704-20.
  文献评价指标  
  下载次数:50次 浏览次数:19次