期刊论文详细信息
Flavour
Beyond flavour to the gut and back
Mikiko Kadohisa1 
[1] MRC Cognition and Brain Sciences Unit, Cambridge, UK
关键词: Satiety;    Reward;    Visceral signal;    Oral signal;    Taste;    Food intake;   
Others  :  1235143
DOI  :  10.1186/s13411-015-0047-8
 received in 2015-09-24, accepted in 2015-12-15,  发布年份 2015
PDF
【 摘 要 】

This paper describes how food is sensed in both the mouth where it produces food reward and pleasantness that guides food intake and is sensed in the gut where it produces satiety and conditioned effects including learned appetite and learned satiety for the food eaten. Taste and other receptors present in both the mouth and gut are involved in these effects. The signals about the presence of food in the mouth and gut are transferred by separate pathways to the brain where the satiety signals from the gut reduce the reward value and subjective pleasantness of taste and other oral sensory signals including food texture. Food flavour preferences can be associatively conditioned by pairing with food in the gut in brain regions such as the orbitofrontal cortex and amygdala. Current issues considered in this paper are how gut sensing of food influences hormone release including cholecystokinin (CCK), peptide YY (PYY), and glucagon-like peptide-1 (GLP-1); how the sensing of different nutrients in the gut may influence unconditioned satiety and conditioned preference and satiety; and how cognition may modulate the pleasantness of food and thus the control of food intake.

【 授权许可】

   
2015 Kadohisa.

【 预 览 】
附件列表
Files Size Format View
20160103002546851.pdf 897KB PDF download
Fig. 3. 17KB Image download
Fig. 2. 18KB Image download
Fig. 1. 23KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS. A novel family of mammalian taste receptors. Cell. 2000; 100(6):693-702.
  • [2]Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ et al.. An amino-acid taste receptor. Nature. 2002; 416(6877):199-202.
  • [3]Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS. Mammalian sweet taste receptors. Cell. 2001; 106(3):381-390.
  • [4]Margolskee RF. Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem. 2002; 277(1):1-4.
  • [5]Roper SD, Chaudhari N. Processing umami and other tastes in mammalian taste buds. Ann N Y Acad Sci. 2009; 1170:60-65.
  • [6]Yarmolinsky DA, Zuker CS, Ryba NJ. Common sense about taste: from mammals to insects. Cell. 2009; 139(2):234-244.
  • [7]Mattes RD. Physiologic responses to sensory stimulation by food: nutritional implications. J Am Diet Assoc. 1997; 97(4):406-413.
  • [8]Power ML, Schulkin J. Anticipatory physiological regulation in feeding biology: cephalic phase responses. Appetite. 2008; 50(2–3):194-206.
  • [9]Smeets PA, Erkner A, de Graaf C. Cephalic phase responses and appetite. Nutr Rev. 2010; 68(11):643-655.
  • [10]Teff K. Nutritional implications of the cephalic-phase reflexes: endocrine responses. Appetite. 2000; 34(2):206-213.
  • [11]Kokrashvili Z, Yee KK, Ilegems E, Iwatsuki K, Li Y, Mosinger B et al.. Endocrine taste cells. Br J Nutr. 2014; 111 Suppl 1:S23-S29.
  • [12]Depoortere I. Taste receptors of the gut: emerging roles in health and disease. Gut. 2014; 63(1):179-190.
  • [13]Dotson CD, Geraedts MC, Munger SD. Peptide regulators of peripheral taste function. Semin Cell Dev Biol. 2013; 24(3):232-239.
  • [14]Shin YK, Martin B, Golden E, Dotson CD, Maudsley S, Kim W et al.. Modulation of taste sensitivity by GLP-1 signaling. J Neurochem. 2008; 106(1):455-463.
  • [15]Shin YK, Martin B, Kim W, White CM, Ji S, Sun Y et al.. Ghrelin is produced in taste cells and ghrelin receptor null mice show reduced taste responsivity to salty (NaCl) and sour (citric acid) tastants. PLoS One. 2010; 5(9):e12729.
  • [16]Kadohisa M, Rolls ET, Verhagen JV. Orbitofrontal cortex: neuronal representation of oral temperature and capsaicin in addition to taste and texture. Neuroscience. 2004; 127(1):207-221.
  • [17]Rolls ET, Verhagen JV, Kadohisa M. Representations of the texture of food in the primate orbitofrontal cortex: neurons responding to viscosity, grittiness, and capsaicin. J Neurophysiol. 2003; 90(6):3711-3724.
  • [18]Verhagen JV, Kadohisa M, Rolls ET. Primate insular/opercular taste cortex: neuronal representations of the viscosity, fat texture, grittiness, temperature, and taste of foods. J Neurophysiol. 2004; 92(3):1685-1699.
  • [19]Hao S, Sternini C, Raybould HE. Role of CCK1 and Y2 receptors in activation of hindbrain neurons induced by intragastric administration of bitter taste receptor ligands. Am J Physiol Regul Integr Comp Physiol. 2008; 294(1):R33-R38.
  • [20]Kokrashvili Z, Mosinger B, Margolskee RF. T1r3 and alpha-gustducin in gut regulate secretion of glucagon-like peptide-1. Ann N Y Acad Sci. 2009; 1170:91-94.
  • [21]Kokrashvili Z, Mosinger B, Margolskee RF. Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones. Am J Clin Nutr. 2009; 90(3):822S-825S.
  • [22]Chen MC, Wu SV, Reeve JR, Rozengurt E. Bitter stimuli induce Ca2+ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive Ca2+ channels. Am J Physiol Cell Physiol. 2006; 291(4):C726-C739.
  • [23]Janssen S, Laermans J, Verhulst PJ, Thijs T, Tack J, Depoortere I. Bitter taste receptors and alpha-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying. Proc Natl Acad Sci U S A. 2011; 108(5):2094-2099.
  • [24]Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J et al.. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci U S A. 2007; 104(38):15069-15074.
  • [25]Blackshaw LA, Grundy D. Effects of cholecystokinin (CCK-8) on two classes of gastroduodenal vagal afferent fibre. J Auton Nerv Syst. 1990; 31(3):191-201.
  • [26]Hewson G, Leighton GE, Hill RG, Hughes J. The cholecystokinin receptor antagonist L364,718 increases food intake in the rat by attenuation of the action of endogenous cholecystokinin. Br J Pharmacol. 1988; 93(1):79-84.
  • [27]Raybould HE, Gayton RJ, Dockray GJ. CNS effects of circulating CCK8: involvement of brainstem neurones responding to gastric distension. Brain Res. 1985; 342(1):187-190.
  • [28]Batterham RL, Bloom SR. The gut hormone peptide YY regulates appetite. Ann N Y Acad Sci. 2003; 994:162-168.
  • [29]McGowan BM, Bloom SR. Peptide YY and appetite control. Curr Opin Pharmacol. 2004; 4(6):583-588.
  • [30]Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S et al.. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology. 2000; 141(11):4325-4328.
  • [31]Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011; 91(2):733-794.
  • [32]Raybould HE. Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci. 2010; 153(1–2):41-46.
  • [33]Kellett GL, Brot-Laroche E, Mace OJ, Leturque A. Sugar absorption in the intestine: the role of GLUT2. Annu Rev Nutr. 2008; 28:35-54.
  • [34]Roder PV, Geillinger KE, Zietek TS, Thorens B, Koepsell H, Daniel H. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One. 2014; 9(2):e89977.
  • [35]Behrens M, Meyerhof W. Gustatory and extragustatory functions of mammalian taste receptors. Physiol Behav. 2011; 105(1):4-13.
  • [36]Green BG. Chemesthesis and the chemical senses as components of a "chemofensor complex". Chem Senses. 2012; 37(3):201-206.
  • [37]Fujita Y, Wideman RD, Speck M, Asadi A, King DS, Webber TD et al.. Incretin release from gut is acutely enhanced by sugar but not by sweeteners in vivo. Am J Physiol Endocrinol Metab. 2009; 296(3):E473-E479.
  • [38]Ma J, Bellon M, Wishart JM, Young R, Blackshaw LA, Jones KL et al.. Effect of the artificial sweetener, sucralose, on gastric emptying and incretin hormone release in healthy subjects. Am J Physiol Gastrointest Liver Physiol. 2009; 296(4):G735-G739.
  • [39]Ford HE, Peters V, Martin NM, Sleeth ML, Ghatei MA, Frost GS et al.. Effects of oral ingestion of sucralose on gut hormone response and appetite in healthy normal-weight subjects. Eur J Clin Nutr. 2011; 65(4):508-513.
  • [40]Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E, Daly K et al.. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci U S A. 2007; 104(38):15075-15080.
  • [41]Berthoud HR. Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterol Motil. 2008; 20 Suppl 1:64-72.
  • [42]Rasoamanana R, Darcel N, Fromentin G, Tome D. Nutrient sensing and signalling by the gut. Proc Nutr Soc. 2012; 71(4):446-455.
  • [43]Hara T, Kashihara D, Ichimura A, Kimura I, Tsujimoto G, Hirasawa A. Role of free fatty acid receptors in the regulation of energy metabolism. Biochim Biophys Acta. 2014; 1841(9):1292-1300.
  • [44]Niijima A. Nervous regulation of metabolism. Prog Neurobiol. 1989; 33(2):135-147.
  • [45]Tsurugizawa T, Uematsu A, Uneyama H, Torii K. Different BOLD responses to intragastric load of L-glutamate and inosine monophosphate in conscious rats. Chem Senses. 2011; 36(2):169-176.
  • [46]Tsurugizawa T, Kondoh T, Torii K. Forebrain activation induced by postoral nutritive substances in rats. Neuroreport. 2008; 19(11):1111-1115.
  • [47]Tsurugizawa T, Uneyama H. Differences in BOLD responses to intragastrically infused glucose and saccharin in rats. Chem Senses. 2014; 39(8):683-691.
  • [48]Tomita S, Terao Y, Hatano T, Nishimura R. Subtotal glossectomy preserving half the tongue base prevents taste disorder in patients with tongue cancer. International journal of oral and maxillofacial surgery. 2014. doi:10.1016/j.ijom.2014.02.006
  • [49]Sclafani A, Marambaud P, Ackroff K. Sucrose-conditioned flavor preferences in sweet ageusic T1r3 and Calhm1 knockout mice. Physiol Behav. 2014; 126:25-29.
  • [50]Beckstead RM, Norgren R. An autoradiographic examination of the central distribution of the trigeminal, facial, glossopharyngeal, and vagal nerves in the monkey. J Comp Neurol. 1979; 184(3):455-472.
  • [51]Pritchard TC, Hamilton RB, Morse JR, Norgren R. Projections of thalamic gustatory and lingual areas in the monkey, Macaca fascicularis. J Comp Neurol. 1986; 244(2):213-228.
  • [52]Pritchard TC. Gustatory system. In: The Human Nervous System. dth ed. Mai JK, Paxinos G, editors. Elservier, MA; 2011: p.1187-1218.
  • [53]Turner BH, Mishkin M, Knapp M. Organization of the amygdalopetal projections from modality-specific cortical association areas in the monkey. J Comp Neurol. 1980; 191(4):515-543.
  • [54]Mufson EJ, Mesulam MM. Insula of the old world monkey. II: afferent cortical input and comments on the claustrum. J Comp Neurol. 1982; 212(1):23-37.
  • [55]Rolls ET, Baylis LL. Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J Neurosci. 1994; 14(9):5437-5452.
  • [56]Carmichael ST, Price JL. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol. 1995; 363(4):615-641.
  • [57]Beckstead RM, Morse JR, Norgren R. The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. J Comp Neurol. 1980; 190(2):259-282.
  • [58]Norgren R. Taste pathways to hypothalamus and amygdala. J Comp Neurol. 1976; 166(1):17-30.
  • [59]Lundy RF, Norgren R. Pontine gustatory activity is altered by electrical stimulation in the central nucleus of the amygdala. J Neurophysiol. 2001; 85(2):770-783.
  • [60]Li CS, Cho YK, Smith DV. Modulation of parabrachial taste neurons by electrical and chemical stimulation of the lateral hypothalamus and amygdala. J Neurophysiol. 2005; 93(3):1183-1196.
  • [61]Lundy RF, Norgren R. Activity in the hypothalamus, amygdala, and cortex generates bilateral and convergent modulation of pontine gustatory neurons. J Neurophysiol. 2004; 91(3):1143-1157.
  • [62]Norita M, Kawamura K. Subcortical afferents to the monkey amygdala: an HRP study. Brain Res. 1980; 190(1):225-230.
  • [63]Pritchard TC, Hamilton RB, Norgren R. Projections of the parabrachial nucleus in the old world monkey. Exp Neurol. 2000; 165(1):101-117.
  • [64]Carmichael ST, Price JL. Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol. 1996; 371(2):179-207.
  • [65]Carmichael ST, Price JL. Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol. 1995; 363(4):642-664.
  • [66]Chikama M, McFarland NR, Amaral DG, Haber SN. Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci. 1997; 17(24):9686-9705.
  • [67]Haber SN, Kunishio K, Mizobuchi M, Lynd-Balta E. The orbital and medial prefrontal circuit through the primate basal ganglia. J Neurosci. 1995; 15(7 Pt 1):4851-4867.
  • [68]Selemon LD, Goldman-Rakic PS. Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci. 1985; 5(3):776-794.
  • [69]Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010; 35(1):4-26.
  • [70]Haber SN, Kim KS, Mailly P, Calzavara R. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci. 2006; 26(32):8368-8376.
  • [71]Huda MS, Wilding JP, Pinkney JH. Gut peptides and the regulation of appetite. Obes Rev. 2006; 7(2):163-182.
  • [72]Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev. 1999; 20(1):68-100.
  • [73]Banks WA. The blood-brain barrier as a regulatory interface in the gut-brain axes. Physiol Behav. 2006; 89(4):472-476.
  • [74]Suzuki K, Simpson KA, Minnion JS, Shillito JC, Bloom SR. The role of gut hormones and the hypothalamus in appetite regulation. Endocr J. 2010; 57(5):359-372.
  • [75]Begg DP, Woods SC. The endocrinology of food intake. Nat Rev Endocrinol. 2013; 9(10):584-597.
  • [76]Simpson K, Parker J, Plumer J, Bloom S. CCK, PYY and PP: the control of energy balance. Handb Exp Pharmacol. 2012; 209:209-230.
  • [77]Druce MR, Small CJ, Bloom SR. Minireview: gut peptides regulating satiety. Endocrinology. 2004; 145(6):2660-2665.
  • [78]Konturek PC, Konturek JW, Czesnikiewicz-Guzik M, Brzozowski T, Sito E, Konturek SJ. Neuro-hormonal control of food intake: basic mechanisms and clinical implications. J Physiol Pharmacol. 2005; 56 Suppl 6:5-25.
  • [79]Scott TR, Yaxley S, Sienkiewicz ZJ, Rolls ET. Gustatory responses in the frontal opercular cortex of the alert cynomolgus monkey. J Neurophysiol. 1986; 56(3):876-890.
  • [80]Yaxley S, Rolls ET, Sienkiewicz ZJ. The responsiveness of neurons in the insular gustatory cortex of the macaque monkey is independent of hunger. Physiol Behav. 1988; 42(3):223-229.
  • [81]Scott TR, Plata-Salaman CR, Smith VL, Giza BK. Gustatory neural coding in the monkey cortex: stimulus intensity. J Neurophysiol. 1991; 65(1):76-86.
  • [82]Ito S, Ogawa H. Neural activities in the fronto-opercular cortex of macaque monkeys during tasting and mastication. Jpn J Physiol. 1994; 44(2):141-156.
  • [83]Rolls ET, Scott TR, Sienkiewicz ZJ, Yaxley S. The responsiveness of neurones in the frontal opercular gustatory cortex of the macaque monkey is independent of hunger. J Physiol. 1988; 397:1-12.
  • [84]Yaxley S, Rolls ET, Sienkiewicz ZJ, Scott TR. Satiety does not affect gustatory activity in the nucleus of the solitary tract of the alert monkey. Brain Res. 1985; 347(1):85-93.
  • [85]Giza BK, Scott TR, Vanderweele DA. Administration of satiety factors and gustatory responsiveness in the nucleus tractus solitarius of the rat. Brain Res Bull. 1992; 28(4):637-639.
  • [86]Scott TR, Small DM. The role of the parabrachial nucleus in taste processing and feeding. Ann N Y Acad Sci. 2009; 1170:372-377.
  • [87]Rolls ET. Emotion and decision-making explained. Oxford University Press, Oxford, UK; 2014.
  • [88]Rolls ET. Taste, olfactory, and food reward value processing in the brain. Progress in neurobiology. 2015;127-128C:64–90. doi:10.1016/j.pneurobio.2015.03.002.
  • [89]Rolls ET. Functions of the anterior insula in taste, autonomic, and related functions. Brain and cognition. 2015. doi:10.1016/j.bandc.2015.07.002.
  • [90]Yasoshima Y, Yamamoto T. Short-term and long-term excitability changes of the insular cortical neurons after the acquisition of taste aversion learning in behaving rats. Neuroscience. 1998; 84(1):1-5.
  • [91]Bermudez-Rattoni F. The forgotten insular cortex: its role on recognition memory formation. Neurobiol Learn Mem. 2014; 109:207-216.
  • [92]Miranda MI, Ferreira G, Ramirez-Lugo L, Bermudez-Rattoni F. Role of cholinergic system on the construction of memories: taste memory encoding. Neurobiol Learn Mem. 2003; 80(3):211-222.
  • [93]Scott TR. Learning through the taste system. Front Syst Neurosci. 2011; 5:87.
  • [94]Bermudez-Rattoni F, McGaugh JL. Insular cortex and amygdala lesions differentially affect acquisition on inhibitory avoidance and conditioned taste aversion. Brain Res. 1991; 549(1):165-170.
  • [95]Kaada BR, Pribram KH, Epstein JA. Respiratory and vascular responses in monkeys from temporal pole, insula, orbital surface and cingulate gyrus; a preliminary report. J Neurophysiol. 1949; 12(5):347-356.
  • [96]Thorpe SJ, Rolls ET, Maddison S. The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp Brain Res. 1983; 49(1):93-115.
  • [97]Takagi SF. The olfactory nervous system of the old world monkey. Jpn J Physiol. 1984; 34(4):561-573.
  • [98]Neafsey EJ. Prefrontal cortical control of the autonomic nervous system: anatomical and physiological observations. Prog Brain Res. 1990; 85:147-165.
  • [99]Rolls ET, Yaxley S, Sienkiewicz ZJ. Gustatory responses of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. J Neurophysiol. 1990; 64(4):1055-1066.
  • [100]Rolls ET, Critchley HD, Mason R, Wakeman EA. Orbitofrontal cortex neurons: role in olfactory and visual association learning. J Neurophysiol. 1996; 75(5):1970-1981.
  • [101]Verhagen JV, Rolls ET, Kadohisa M. Neurons in the primate orbitofrontal cortex respond to fat texture independently of viscosity. J Neurophysiol. 2003; 90(3):1514-1525.
  • [102]Carmichael ST, Price JL. Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey. J Comp Neurol. 1994; 346(3):366-402.
  • [103]Ongur D, An X, Price JL. Prefrontal cortical projections to the hypothalamus in macaque monkeys. J Comp Neurol. 1998; 401(4):480-505.
  • [104]Kadohisa M, Rolls ET, Verhagen JV. Neuronal representations of stimuli in the mouth: the primate insular taste cortex, orbitofrontal cortex and amygdala. Chem Senses. 2005; 30(5):401-419.
  • [105]Padoa-Schioppa C, Assad JA. Neurons in the orbitofrontal cortex encode economic value. Nature. 2006; 441(7090):223-226.
  • [106]Tremblay L, Schultz W. Relative reward preference in primate orbitofrontal cortex. Nature. 1999; 398(6729):704-708.
  • [107]Morrison SE, Salzman CD. The convergence of information about rewarding and aversive stimuli in single neurons. J Neurosci. 2009; 29(37):11471-11483.
  • [108]Critchley HD, Rolls ET. Olfactory neuronal responses in the primate orbitofrontal cortex: analysis in an olfactory discrimination task. J Neurophysiol. 1996; 75(4):1659-1672.
  • [109]Critchley HD, Rolls ET. Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. J Neurophysiol. 1996; 75(4):1673-1686.
  • [110]Rolls ET, Sienkiewicz ZJ, Yaxley S. Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur J Neurosci. 1989; 1(1):53-60.
  • [111]Morrison SE, Saez A, Lau B, Salzman CD. Different time courses for learning-related changes in amygdala and orbitofrontal cortex. Neuron. 2011; 71(6):1127-1140.
  • [112]Delgado JM, Livingston RB. Some respiratory, vascular and thermal responses to stimulation of orbital surface of frontal lobe. J Neurophysiol. 1948; 11(1):39-55.
  • [113]Bailey P, Sweet WH. Effects on respiration, blood pressure and gastric motility of stimulation of orbital surface of frontal lobe. Neurophysiology. 1940; 3:276-281.
  • [114]Gabbott PL, Warner TA, Jays PR, Bacon SJ. Areal and synaptic interconnectivity of prelimbic (area 32), infralimbic (area 25) and insular cortices in the rat. Brain Res. 2003; 993(1–2):59-71.
  • [115]Price JL, Amaral DG. An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J Neurosci. 1981; 1(11):1242-1259.
  • [116]Barbas H, Saha S, Rempel-Clower N, Ghashghaei T. Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression. BMC Neurosci. 2003; 4:25.
  • [117]Rolls ET. Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion. Acta Physiol Hung. 2008; 95(2):131-164.
  • [118]Jezzini A, Mazzucato L, La Camera G, Fontanini A. Processing of hedonic and chemosensory features of taste in medial prefrontal and insular networks. J Neurosci. 2013; 33(48):18966-18978.
  • [119]Bouret S, Richmond BJ. Ventromedial and orbital prefrontal neurons differentially encode internally and externally driven motivational values in monkeys. J Neurosci. 2010; 30(25):8591-8601.
  • [120]Niki H, Watanabe M. Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Res. 1979; 171(2):213-224.
  • [121]Matsumoto M, Matsumoto K, Abe H, Tanaka K. Medial prefrontal cell activity signaling prediction errors of action values. Nat Neurosci. 2007; 10(5):647-656.
  • [122]Smith WK. The functional significance of the rostral cingular cortex as revealed by its responses to electrical excitation. Neurophysiology. 1945; 8:241-255.
  • [123]Ward AA. The cingular gyrus, area 24. J Neurophysiol. 1948; 11(1):13-23.
  • [124]Kennerley SW, Walton ME, Behrens TE, Buckley MJ, Rushworth MF. Optimal decision making and the anterior cingulate cortex. Nat Neurosci. 2006; 9(7):940-947.
  • [125]Bernard JF, Alden M, Besson JM. The organization of the efferent projections from the pontine parabrachial area to the amygdaloid complex: a Phaseolus vulgaris leucoagglutinin (PHA-L) study in the rat. J Comp Neurol. 1993; 329(2):201-229.
  • [126]Saper CB. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu Rev Neurosci. 2002; 25:433-469.
  • [127]Aggleton JP, Burton MJ, Passingham RE. Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res. 1980; 190(2):347-368.
  • [128]Mufson EJ, Mesulam MM, Pandya DN. Insular interconnections with the amygdala in the rhesus monkey. Neuroscience. 1981; 6(7):1231-1248.
  • [129]Amaral DG, Price JL. Amygdalo-cortical projections in the monkey (Macaca fascicularis). J Comp Neurol. 1984; 230(4):465-496.
  • [130]Pitkanen A, Amaral DG. Organization of the intrinsic connections of the monkey amygdaloid complex: projections originating in the lateral nucleus. J Comp Neurol. 1998; 398(3):431-458.
  • [131]Fudge JL, Kunishio K, Walsh P, Richard C, Haber SN. Amygdaloid projections to ventromedial striatal subterritories in the primate. Neuroscience. 2002; 110(2):257-275.
  • [132]Scott TR, Karadi Z, Oomura Y, Nishino H, Plata-Salaman CR, Lenard L et al.. Gustatory neural coding in the amygdala of the alert macaque monkey. J Neurophysiol. 1993; 69(6):1810-1820.
  • [133]Kadohisa M, Verhagen JV, Rolls ET. The primate amygdala: neuronal representations of the viscosity, fat texture, temperature, grittiness and taste of foods. Neuroscience. 2005; 132(1):33-48.
  • [134]Balleine BW, Killcross S. Parallel incentive processing: an integrated view of amygdala function. Trends Neurosci. 2006; 29(5):272-279.
  • [135]Corbit LH, Balleine BW. Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer. J Neurosci. 2005; 25(4):962-970.
  • [136]Yasoshima Y, Shimura T, Yamamoto T. Single unit responses of the amygdala after conditioned taste aversion in conscious rats. Neuroreport. 1995; 6(17):2424-2428.
  • [137]Nishijo H, Ono T, Nishino H. Single neuron responses in amygdala of alert monkey during complex sensory stimulation with affective significance. J Neurosci. 1988; 8(10):3570-3583.
  • [138]Paton JJ, Belova MA, Morrison SE, Salzman CD. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature. 2006; 439(7078):865-870.
  • [139]Sanghera MK, Rolls ET, Roper-Hall A. Visual responses of neurons in the dorsolateral amygdala of the alert monkey. Exp Neurol. 1979; 63(3):610-626.
  • [140]Wellman LL, Gale K, Malkova L. GABAA-mediated inhibition of basolateral amygdala blocks reward devaluation in macaques. J Neurosci. 2005; 25(18):4577-4586.
  • [141]Yan J, Scott TR. The effect of satiety on responses of gustatory neurons in the amygdala of alert cynomolgus macaques. Brain Res. 1996; 740(1–2):193-200.
  • [142]Rempel-Clower NL, Barbas H. Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey. J Comp Neurol. 1998; 398(3):393-419.
  • [143]Morecraft RJ, Geula C, Mesulam MM. Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. J Comp Neurol. 1992; 323(3):341-358.
  • [144]Tanabe T, Yarita H, Iino M, Ooshima Y, Takagi SF. An olfactory projection area in orbitofrontal cortex of the monkey. J Neurophysiol. 1975; 38(5):1269-1283.
  • [145]Aponte Y, Atasoy D, Sternson SM. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci. 2011; 14(3):351-355.
  • [146]Atasoy D, Betley JN, Su HH, Sternson SM. Deconstruction of a neural circuit for hunger. Nature. 2012; 488(7410):172-177.
  • [147]Krashes MJ, Shah BP, Madara JC, Olson DP, Strochlic DE, Garfield AS et al.. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature. 2014; 507(7491):238-242.
  • [148]O'Malley D, Reimann F, Simpson AK, Gribble FM. Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing. Diabetes. 2006; 55(12):3381-3386.
  • [149]Burton MJ, Rolls ET, Mora F. Effects of hunger on the responses of neurons in the lateral hypothalamus to the sight and taste of food. Exp Neurol. 1976; 51(3):668-677.
  • [150]Rolls ET, Murzi E, Yaxley S, Thorpe SJ, Simpson SJ. Sensory-specific satiety: food-specific reduction in responsiveness of ventral forebrain neurons after feeding in the monkey. Brain Res. 1986; 368(1):79-86.
  • [151]Baxter MG, Parker A, Lindner CC, Izquierdo AD, Murray EA. Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J Neurosci. 2000; 20(11):4311-4319.
  • [152]Pears A, Parkinson JA, Hopewell L, Everitt BJ, Roberts AC. Lesions of the orbitofrontal but not medial prefrontal cortex disrupt conditioned reinforcement in primates. J Neurosci. 2003; 23(35):11189-11201.
  • [153]Faurion A, Cerf B, Le Bihan D, Pillias AM. fMRI study of taste cortical areas in humans. Ann N Y Acad Sci. 1998; 855:535-545.
  • [154]de Araujo IE, Kringelbach ML, Rolls ET, Hobden P. Representation of umami taste in the human brain. J Neurophysiol. 2003; 90(1):313-319.
  • [155]Critchley HD. Neural mechanisms of autonomic, affective, and cognitive integration. J Comp Neurol. 2005; 493(1):154-166.
  • [156]O'Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F. Representation of pleasant and aversive taste in the human brain. J Neurophysiol. 2001; 85(3):1315-1321.
  • [157]Small DM, Gregory MD, Mak YE, Gitelman D, Mesulam MM, Parrish T. Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron. 2003; 39(4):701-711.
  • [158]Small DM, Bender G, Veldhuizen MG, Rudenga K, Nachtigal D, Felsted J. The role of the human orbitofrontal cortex in taste and flavor processing. Ann N Y Acad Sci. 2007; 1121:136-151.
  • [159]Kringelbach ML, O'Doherty J, Rolls ET, Andrews C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb Cortex. 2003; 13(10):1064-1071.
  • [160]Batterham RL, Ffytche DH, Rosenthal JM, Zelaya FO, Barker GJ, Withers DJ et al.. PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans. Nature. 2007; 450(7166):106-109.
  • [161]Malik S, McGlone F, Bedrossian D, Dagher A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 2008; 7(5):400-409.
  • [162]Grabenhorst F, Rolls ET, Bilderbeck A. How cognition modulates affective responses to taste and flavor: top-down influences on the orbitofrontal and pregenual cingulate cortices. Cereb Cortex. 2008; 18(7):1549-1559.
  • [163]Grabenhorst F, Rolls ET. Selective attention to affective value alters how the brain processes taste stimuli. Eur J Neurosci. 2008; 27(3):723-729.
  • [164]Allman JM, Hakeem A, Erwin JM, Nimchinsky E, Hof P. The anterior cingulate cortex. The evolution of an interface between emotion and cognition. Ann N Y Acad Sci. 2001; 935:107-117.
  • [165]Grabenhorst F, Rolls ET. Value, pleasure and choice in the ventral prefrontal cortex. Trends Cogn Sci. 2011; 15(2):56-67.
  • [166]Sheth SA, Mian MK, Patel SR, Asaad WF, Williams ZM, Dougherty DD et al.. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature. 2012; 488(7410):218-221.
  • [167]Walton ME, Devlin JT, Rushworth MF. Interactions between decision making and performance monitoring within prefrontal cortex. Nat Neurosci. 2004; 7(11):1259-1265.
  • [168]Cassady BA, Considine RV, Mattes RD. Beverage consumption, appetite, and energy intake: what did you expect? Am J Clin Nutr. 2012; 95(3):587-593.
  • [169]Provencher V, Polivy J, Herman CP. Perceived healthiness of food. If it’s healthy, you can eat more! Appetite. 2009; 52(2):340-344.
  • [170]Schioth HB, Ferriday D, Davies SR, Benedict C, Elmstahl H, Brunstrom JM et al.. Are you sure? Confidence about the satiating capacity of a food affects subsequent food intake. Nutrients. 2015; 7(7):5088-5097.
  • [171]Nicolaidis S, Rowland N. Intravenous self-feeding: long-term regulation of energy balance in rats. Science. 1977; 195(4278):589-591.
  • [172]Sclafani A. Oral and postoral determinants of food reward. Physiol Behav. 2004; 81(5):773-779.
  • [173]Booth DA. Food-conditioned eating preferences and aversions with interoceptive elements: conditioned appetites and satieties. Ann N Y Acad Sci. 1985; 443:22-41.
  • [174]Sclafani A. Gut-brain nutrient signaling. Appetition vs satiation Appetite. 2013; 71:454-458.
  • [175]Gibbs J, Falasco JD. Sham feeding in the rhesus monkey. Physiol Behav. 1978; 20(3):245-249.
  • [176]Gibbs J, Maddison SP, Rolls ET. Satiety role of the small intestine examined in sham-feeding rhesus monkeys. J Comp Physiol Psychol. 1981; 95(6):1003-1015.
  • [177]Rolls ET. Central nervous mechanisms related to feeding and appetite. Br Med Bull. 1981; 37(2):131-134.
  • [178]Raynor HA, Epstein LH. Dietary variety, energy regulation, and obesity. Psychol Bull. 2001; 127(3):325-341.
  • [179]Yamamoto T. Taste responses of cortical neurons. Prog Neurobiol. 1984; 23(4):273-315.
  • [180]Davis CM, Riley AL. Conditioned taste aversion learning: implications for animal models of drug abuse. Ann N Y Acad Sci. 2010; 1187:247-275.
  • [181]Guzman-Ramos K, Bermudez-Rattoni F. Post-learning molecular reactivation underlies taste memory consolidation. Front Syst Neurosci. 2011; 5:79.
  • [182]Lin JY, Arthurs J, Reilly S. Conditioned taste aversion, drugs of abuse and palatability. Neurosci Biobehav Rev. 2014; 45C:28-45.
  • [183]Logue AW, Ophir I, Strauss KE. The acquisition of taste aversions in humans. Behav Res Ther. 1981; 19(4):319-333.
  • [184]Ackroff K, Sclafani A. Energy density and macronutrient composition determine flavor preference conditioned by intragastric infusions of mixed diets. Physiol Behav. 2006; 89(2):250-260.
  • [185]Ackroff K, Sclafani A. Rapid post-oral stimulation of intake and flavor conditioning in rats by glucose but not a non-metabolizable glucose analog. Physiol Behav. 2014; 133:92-98.
  • [186]de Araujo IE, Ferreira JG, Tellez LA, Ren X, Yeckel CW. The gut-brain dopamine axis: a regulatory system for caloric intake. Physiol Behav. 2012; 106(3):394-399.
  • [187]Zukerman S, Ackroff K, Sclafani A. Rapid post-oral stimulation of intake and flavor conditioning by glucose and fat in the mouse. Am J Physiol Regul Integr Comp Physiol. 2011; 301(6):R1635-R1647.
  • [188]Sclafani A, Glass DS, Margolskee RF, Glendinning JI. Gut T1R3 sweet taste receptors do not mediate sucrose-conditioned flavor preferences in mice. Am J Physiol Regul Integr Comp Physiol. 2010; 299(6):R1643-R1650.
  • [189]Sclafani A, Ackroff K, Schwartz GJ. Selective effects of vagal deafferentation and celiac-superior mesenteric ganglionectomy on the reinforcing and satiating action of intestinal nutrients. Physiol Behav. 2003; 78(2):285-294.
  • [190]Zukerman S, Ackroff K, Sclafani A. Post-oral appetite stimulation by sugars and nonmetabolizable sugar analogs. Am J Physiol Regul Integr Comp Physiol. 2013; 305(7):R840-R853.
  • [191]Sclafani A, Fanizza LJ, Azzara AV. Conditioned flavor avoidance, preference, and indifference produced by intragastric infusions of galactose, glucose, and fructose in rats. Physiol Behav. 1999; 67(2):227-234.
  • [192]Ackroff K, Touzani K, Peets TK, Sclafani A. Flavor preferences conditioned by intragastric fructose and glucose: differences in reinforcement potency. Physiol Behav. 2001; 72(5):691-703.
  • [193]Sclafani A, Ackroff K. Flavor preferences conditioned by intragastric glucose but not fructose or galactose in C57BL/6 J mice. Physiol Behav. 2012; 106(4):457-461.
  • [194]Yiin YM, Ackroff K, Sclafani A. Flavor preferences conditioned by intragastric nutrient infusions in food restricted and free-feeding rats. Physiol Behav. 2005; 84(2):217-231.
  • [195]Rolls BJ, Hetherington M, Laster LJ. Comparison of the effects of aspartame and sucrose on appetite and food intake. Appetite. 1988; 11 Suppl 1:62-67.
  • [196]O'Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F, Kobal G et al.. Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex. Neuroreport. 2000; 11(4):893-897.
  • [197]Gottfried JA, O'Doherty J, Dolan RJ. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science. 2003; 301(5636):1104-1107.
  • [198]Midkiff EE, Bernstein IL. Targets of learned food aversions in humans. Physiol Behav. 1985; 34(5):839-841.
  • [199]Arwas S, Rolnick A, Lubow RE. Conditioned taste aversion in humans using motion-induced sickness as the US. Behav Res Ther. 1989; 27(3):295-301.
  • [200]Okifuji A, Friedman AG. Experimentally induced taste aversions in humans: effects of overshadowing on acquisition. Behav Res Ther. 1992; 30(1):23-32.
  • [201]Gibson EL, Wainwright CJ, Booth DA. Disguised protein in lunch after low-protein breakfast conditions food-flavor preferences dependent on recent lack of protein intake. Physiol Behav. 1995; 58(2):363-371.
  • [202]Drewnowski A, Massien C, Louis-Sylvestre J, Fricker J, Chapelot D, Apfelbaum M. Comparing the effects of aspartame and sucrose on motivational ratings, taste preferences, and energy intakes in humans. Am J Clin Nutr. 1994; 59(2):338-345.
  • [203]Birch LL, McPhee L, Steinberg L, Sullivan S. Conditioned flavor preferences in young children. Physiol Behav. 1990; 47(3):501-505.
  • [204]Kern DL, McPhee L, Fisher J, Johnson S, Birch LL. The postingestive consequences of fat condition preferences for flavors associated with high dietary fat. Physiol Behav. 1993; 54(1):71-76.
  • [205]Masic U, Yeomans MR. Umami flavor enhances appetite but also increases satiety. Am J Clin Nutr. 2014; 100(2):532-538.
  • [206]van Avesaat M, Troost FJ, Ripken D, Peters J, Hendriks HF, Masclee AA. Intraduodenal infusion of a combination of tastants decreases food intake in humans. Am J Clin Nutr. 2015; 102(4):729-735.
  • [207]Yeomans MR, Gould NJ, Mobini S, Prescott J. Acquired flavor acceptance and intake facilitated by monosodium glutamate in humans. Physiol Behav. 2008; 93(4–5):958-966.
  • [208]Brooks SJ, O'Daly O, Uher R, Friederich HC, Giampietro V, Brammer M et al.. Thinking about eating food activates visual cortex with reduced bilateral cerebellar activation in females with anorexia nervosa: an fMRI study. PLoS One. 2012; 7(3):e34000.
  • [209]Kaye WH, Wierenga CE, Bailer UF, Simmons AN, Bischoff-Grethe A. Nothing tastes as good as skinny feels: the neurobiology of anorexia nervosa. Trends Neurosci. 2013; 36(2):110-120.
  • [210]Small DM, Scott TR. Symposium overview: what happens to the pontine processing? Repercussions of interspecies differences in pontine taste representation for tasting and feeding. Ann N Y Acad Sci. 2009; 1170:343-346.
  • [211]Passingham RE, Wise SP. The neurobiology of prefrontal cortex. Anatomy, evolution, and the origin of insight. Oxford University Press, Oxford; 2012.
  文献评价指标  
  下载次数:26次 浏览次数:9次