期刊论文详细信息
Journal of Translational Medicine
MiRNA-329 targeting E2F1 inhibits cell proliferation in glioma cells
Ruxiang Xu4  Zhiliang Liu4  Benfu He3  Li Tan2  Bingxiang Xiao1 
[1] The neurosurgery Department, Wuhan General Hospital, Guangzhou Command, PLA, Wu han 430070, P. R. China;Center of Oncology and Hematology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, P. R. China;Oncology Department, PLA 421 Hospital, Guangzhou 510318, P. R. China;The neurosurgery Department, General Hospital of Beijing Military Command of People's Liberation Army (PLA), Bei jing 100700, P. R. China
关键词: Cell proliferation;    MiR-329;    E2F1;    Glioma;   
Others  :  827159
DOI  :  10.1186/1479-5876-11-172
 received in 2013-01-03, accepted in 2013-07-08,  发布年份 2013
PDF
【 摘 要 】

Background

MicroRNAs have recently emerged as key regulators of cancers, miR-329 located on 14q32.31 is one of down-regulated miRNAs in glioma, but the function and molecular mechanisms of miR-329 in determining the malignant phenotype of human glioma are elusive. This study therefore was conducted to investigate the role of miR-329 in biological behaviors of human glioma LN18 and T98G cell lines and its molecular mechanisms.

Methods

Nine patients with GBM were analyzed for the expression of miR-329 by quantitative RT–PCR. MiR-329 overexpression was established by transfecting miR-329 precursor into LN18 and T98G cells, and its effects on cell proliferation were studied using MTT assay, anchorage-independent growth ability assay, colony formation assays, Bromodeoxyuridine labeling and immunofluorescence.

The effects of miR-329 on cell cycle were studied by flow cytometry. The target of miR-329 was determined by luciferase assays. The regulation of miR-329 on Akt pathway was determined by western blot.

Results

The E2F1 was identified as the target of miR-329. Overexpression of miR-329 blocked G1/S transition in LN18 and T98G cell lines, dramatically suppressed cell proliferation and the ability of colony formation. MiR-329 significantly decreased the phosphorylation levels of intracellular kinases Akt and expression of cyclin D1, but the expression of p21 was upregulated, cell growth was suppressed by inhibiting E2F1-mediated Akt pathway.

Conclusions

MiR-329 may inhibit cell proliferation in human glioma cells through regulating E2F1-mediated suppression of Akt pathway.

【 授权许可】

   
2013 Xiao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713113906243.pdf 3205KB PDF download
Figure 6. 86KB Image download
Figure 5. 76KB Image download
Figure 4. 108KB Image download
Figure 3. 138KB Image download
Figure 2. 130KB Image download
Figure 1. 54KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Wiedemeyer R, Brennan C, Heffernan TP, Xiao Y, Mahoney J, Protopopov A, Zheng H, Bignell G, Furnari F, Cavenee WK, Hahn WC, Ichimura K, Collins VP, Chu GC, Stratton MR, Ligon KL, Futreal PA, Chin L: Feedback circuit among INK4 tumor suppressors constrains human glioma development. Cancer Cell 2008, 13:355-64.
  • [2]Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK: Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 2007, 21:2683-2710.
  • [3]Cancer Genome Atlas Research Network: Comprehensive genomic characterization defines human glioma genes and core pathways. Nat 2008, 455:1061-1068.
  • [4]Alonso MM, Fueyo J, Shay JW, Aldape KD, Jiang H, Lee OH, Johnson DG, Xu J, Kondo Y, Kanzawa T, Kyo S, Bekele BN, Zhou X, Nigro J, McDonald JM, Yung WK, Gomez-Manzano C: Expression of transcription factor E2F1 and telomerase in gliomas: mechanistic linkage and prognostic significance. J Natl Cancer Inst 2005, 97:1589-600.
  • [5]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
  • [6]Hwang HW, Mendell JT: MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 2007, 96(Suppl):R40-44.
  • [7]Jovanovic M, Hengartner MO: miRNAs and apoptosis: RNAs to die for. Oncogene 2006, 25:6176-6187.
  • [8]Kent OA, Mendell JT: A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 2006, 25:6188-6196.
  • [9]Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006, 103:2257-2261.
  • [10]Esquela-Kerscher A, Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006, 6:259-269.
  • [11]Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E: MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer 2009, 125:1407-1413.
  • [12]Gorgoulis VG, Zacharatos P, Mariatos G, Kotsinas A, Bouda M, Kletsas D, Asimacopoulos PJ, Agnantis N, Kittas C, Papavassiliou AG: Transcription factor E2F-1 acts as a growth-promoting factor and is associated with adverse prognosis in non-small cell lung carcinomas. J Pathol 2002, 198:142-156.
  • [13]Eymin B, Gazzeri S, Brambilla C, Brambilla E: Distinct pattern of E2F1 expression in human lung tumours: E2F1 is upregulated in small cell lung carcinoma. Oncogene 2001, 20:1678-1687.
  • [14]Suh DS, Yoon MS, Choi KU, Kim JY: Significance of E2F-1 overexpression in epithelial ovarian cancer. Int J Gynecol Cancer 2008, 18:492-498.
  • [15]Real S, Meo-Evoli N, Espada L, Tauler A: E2F1 regulates cellular growth by mTORC1 signaling. PLoS One 2011, 6:e16163.
  • [16]Fueyo J, Gomez-Manzano C, Yung WK, Liu TJ, Alemany R, McDonnell TJ, Shi X, Rao JS, Levin VA, Kyritsis AP: Overexpression of E2F-1 in glioma triggers apoptosis and suppresses tumor growth in vitro and in vivo. Nat Med 1998, 4:685-690.
  • [17]Shu HK, Julin CM, Furman F, Yount GL, Haas-Kogan D, Israel MA: Overexpression of E2F1 in glioma-derived cell lines induces a p53-independent apoptosis that is further enhanced by ionizing radiation. Neuro Oncol 2000, 2:16-21.
  • [18]Dar AA, Majid S, de Semir D, Nosrati M, Bezrookove V, Kashani-Sabet M: miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem 2011, 286:16606-16614.
  • [19]Zauli G, Voltan R, di Iasio MG, Bosco R, Melloni E, Sana ME, Secchiero P: miR-34a induces the downregulation of both E2F1 and B-Myb oncogenes in leukemic cells. Clin Cancer Res 2011, 17:2712-2724.
  • [20]Ofir M, Hacohen D, Ginsberg D: MiR-15 and miR-16 are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E. Mol Cancer Res 2011, 9:440-447.
  • [21]Trompeter HI, Abbad H, Iwaniuk KM, Hafner M, Renwick N, Tuschl T, Schira J, Müller HW, Wernet P: MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC. PLoS One 2011, 6(1):e1613.
  • [22]O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT: c-Myc-regulated microRNAs modulate E2F1 expression. Nat 2005, 435:839-843.
  • [23]Yang G, Zhang R, Chen X, Mu Y, Ai J, Shi C, Liu Y, Shi C, Sun L, Rainov NG, Li H, Yang B, Zhao S: MiR-106a inhibits glioma cell growth by targeting E2F1 independent of p53 status. J Mol Med (Berl) 2011, 89:1037-1050.
  • [24]Ernst A, Campos B, Meier J, Devens F, Liesenberg F, Wolter M, Reifenberger G, Herold-Mende C, Lichter P, Radlwimmer B: De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioma spheroid cultures. Oncogene 2010, 29:3411-3422.
  • [25]Alonso MM, Alemany R, Fueyo J, Gomez-Manzano C: E2F1 in gliomas: a paradigm of oncogene addiction. Cancer Lett 2008, 263:157-163.
  • [26]Chaussepied M, Ginsberg D: Transcriptional regulation of AKT activation by E2F. Mol Cell 2004, 16:831-837.
  • [27]Haas-Kogan D, Shalev N, Wong M, Mills G, Yount G, Stokoe D: Protein kinase B (PKB/Akt) activity is elevated in glioma cells due to mutation of the tumor suppressor PTEN/MMAC. Curr Biol 1998, 8:1195-1198.
  • [28]Choe G, Horvath S, Cloughesy TF, Crosby K, Seligson D, Palotie A, Inge L, Smith BL, Sawyers CL, Mischel PS: Analysis of the phosphatidylinositol 3′-kinase signaling pathway in glioma patients in vivo. Cancer Res 2003, 63:2742-2746.
  • [29]Diehl JA, Cheng M, Roussel MF, Sherr CJ: Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 1998, 12:3499-3511.
  • [30]Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nat 1995, 378:785-789.
  • [31]Gera JF, Mellinghoff IK, Shi Y, Rettig MB, Tran C, Hsu JH, Sawyers CL, Lichtenstein AK: AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem 2004, 279:2737-2746.
  • [32]Johnson DG, Walker CL: Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol 1999, 39:295-312.
  • [33]Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC: HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 2001, 3:973-982.
  • [34]LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A, Harlow E: New functional activities for the p21 family of CDK inhibitors. Genes Dev 1997, 11:847-862.
  • [35]Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, Sherr CJ: The p21(Cip1) and p27(Kip1) CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 1999, 18:1571-1583.
  • [36]Sherr CJ, Roberts JM: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999, 13:1501-1512.
  文献评价指标  
  下载次数:41次 浏览次数:8次