期刊论文详细信息
Journal for ImmunoTherapy of Cancer
Myeloid derived suppressor and dendritic cell subsets are related to clinical outcome in prostate cancer patients treated with prostate GVAX and ipilimumab
Tanja D de Gruijl1  Alfons JM van den Eertwegh1  Winald R Gerritsen1  Rik J Scheper2  Israel Lowy4  Kristen Hege3  Natalie Sacks3  Karin Jooss3  Helen Gall1  Sinéad M Lougheed1  Anita GM Stam2  Saskia JAM Santegoets1 
[1] Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands;Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands;Cell Genesys Inc, South San Francisco, CA, USA;Medarex, Bloomsbury, NJ/Bristol-Myers Squibb Company, Wallingford, CT, USA
关键词: Survival prediction;    Patient selection;    Biomarker;    Prostate GVAX;    Ipilimumab;   
Others  :  1139870
DOI  :  10.1186/s40425-014-0031-3
 received in 2014-04-09, accepted in 2014-08-06,  发布年份 2014
PDF
【 摘 要 】

Background

Cancer-related disturbances in myeloid lineage development, marked by high levels of myeloid-derived suppressor cells (MDSC) and impaired dendritic cell (DC) development, are associated with poor clinical outcome due to immune escape and therapy resistance. Redressing this balance may therefore be of clinical benefit. Here we investigated the effects of combined Prostate GVAX/ipilimumab immunotherapy on myeloid subsets in peripheral blood of castration-resistant prostate cancer (CRPC) patients as well as the putative predictive value of baseline and on-treatment myeloid parameters on clinical outcome.

Methods

Patients with CRPC (n?=?28) received thirteen intradermal administrations of Prostate GVAX, consisting of two allogeneic GM-CSF-transduced and irradiated prostate cancer cell lines (LN-CaP and PC3) and six infusions of escalating doses of anti-CTLA4/ipilimumab. Frequencies and activation status of peripheral blood DC (PBDC) and MDSC were determined before, during and after treatment by flowcytometric analysis and related to clinical benefit.

Results

Significant treatment-induced activation of conventional and plasmacytoid DC subsets (cDC and pDC) was observed, which in the case of BDCA1/CD1c+ cDC1 and MDC8+/6-sulfoLacNAc+ inflammatory cDC3 was associated with significantly prolonged overall survival (OS), but also with the development of autoimmune-related adverse events. High pre-treatment levels of CD14+HLA-DR?monocytic MDSC (mMDSC) were associated with reduced OS. Unsupervised clustering of these myeloid biomarkers revealed particular survival advantage in a group of patients with high treatment-induced PBDC activation and low pretreatment frequencies of suppressive mMDSC in conjunction with our previously identified lymphoid biomarker of high pretreatment CD4+CTLA4+ T cell frequencies.

Conclusions

Our data demonstrate that DC and MDSC subsets are affected by prostate GVAX/ipilimumab therapy and that myeloid profiling may contribute to the identification of patients with possible clinical benefit of Prostate GVAX/ipilimumab treatment.

【 授权许可】

   
2014 Santegoets et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150323100031175.pdf 734KB PDF download
Figure 5. 50KB Image download
Figure 4. 50KB Image download
Figure 3. 27KB Image download
Figure 2. 32KB Image download
Figure 1. 64KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Drake CG: Prostate cancer as a model for tumour immunotherapy. Nat Rev Immunol 2010, 10:580-593.
  • [2]Tannock IF, De WR, Berry WR, Horti J, Pluzanska A, Chi KN, Oudard S, Theodore C, James ND, Turesson I, Rosenthal MA, Eisenberger MA: Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004, 351:1502-1512.
  • [3]Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF: Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010, 363:411-422.
  • [4]Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, Manson K, Panicali DL, Laus R, Schlom J, Dahut WL, Arlen PM, Gulley JL, Godfrey WR: Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 2010, 28:1099-1105.
  • [5]Yang JC, Hughes M, Kammula U, Royal R, Sherry RM, Topalian SL, Suri KB, Levy C, Allen T, Mavroukakis S, Lowy I, White DE, Rosenberg SA: Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother 2007, 30:825-830.
  • [6]Small EJ, Sacks N, Nemunaitis J, Urba WJ, Dula E, Centeno AS, Nelson WG, Ando D, Howard C, Borellini F, Nguyen M, Hege K, Simons JW: Granulocyte macrophage colony-stimulating factor¿secreting allogeneic cellular immunotherapy for hormone-refractory prostate cancer. Clin Cancer Res 2007, 13:3883-3891.
  • [7]Hodi FS, O¿Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ: Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010, 363:711-723.
  • [8]Hodi FS, Mihm MC, Soiffer RJ, Haluska FG, Butler M, Seiden MV, Davis T, Henry-Spires R, Macrae S, Willman A, Padera R, Jaklitsch MT, Shankar S, Chen TC, Korman A, Allison JP, Dranoff G: Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci U S A 2003, 100:4712-4717.
  • [9]Fong L, Kwek SS, O¿Brien S, Kavanagh B, McNeel DG, Weinberg V, Lin AM, Rosenberg J, Ryan CJ, Rini BI, Small EJ: Potentiating endogenous antitumor immunity to prostate cancer through combination immunotherapy with CTLA4 blockade and GM-CSF. Cancer Res 2009, 69:609-615.
  • [10]Hurwitz AA, Yu TF, Leach DR, Allison JP: CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc Natl Acad Sci U S A 1998, 95:10067-10071.
  • [11]van den Eertwegh AJ, Versluis J, van den Berg HP, Santegoets SJ, van Moorselaar RJ, van der Sluis TM, Gall HE, Harding TC, Jooss K, Lowy I, Pinedo HM, Scheper RJ, Stam AG, von Blomberg BM, de Gruijl TD, Hege K, Sacks N, Gerritsen WR: Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol 2012, 13:509-517.
  • [12]Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, Carbone DP, Gabrilovich DI: Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 2000, 6:1755-1766.
  • [13]Gabrilovich DI, Corak J, Ciernik IF, Kavanaugh D, Carbone DP: Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res 1997, 3:483-490.
  • [14]Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, Carbone DP: Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 1998, 92:4150-4166.
  • [15]Della BS, Gennaro M, Vaccari M, Ferraris C, Nicola S, Riva A, Clerici M, Greco M, Villa ML: Altered maturation of peripheral blood dendritic cells in patients with breast cancer. Br J Cancer 2003, 89:1463-1472.
  • [16]Boissel N, Rousselot P, Raffoux E, Cayuela JM, Maarek O, Charron D, Degos L, Dombret H, Toubert A, Rea D: Defective blood dendritic cells in chronic myeloid leukemia correlate with high plasmatic VEGF and are not normalized by imatinib mesylate. Leukemia 2004, 18:1656-1661.
  • [17]Santegoets SJ, Stam AG, Lougheed SM, Gall H, Scholten PE, Reijm M, Jooss K, Sacks N, Hege K, Lowy I, Cuillerot JM, von Blomberg BM, Scheper RJ, van den Eertwegh AJ, Gerritsen WR, de Gruijl TD: T cell profiling reveals high CD4?+?CTLA-4?+?T cell frequency as dominant predictor for survival after prostate GVAX/ipilimumab treatment. Cancer Immunol Immunother 2013, 62:245-256.
  • [18]MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN: Characterization of human blood dendritic cell subsets. Blood 2002, 100:4512-4520.
  • [19]Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F, de Waal MR, Liu YJ: Reciprocal control of T helper cell and dendritic cell differentiation. Science 1999, 283:1183-1186.
  • [20]Haddad D, Ramprakash J, Sedegah M, Charoenvit Y, Baumgartner R, Kumar S, Hoffman SL, Weiss WR: Plasmid vaccine expressing granulocyte-macrophage colony-stimulating factor attracts infiltrates including immature dendritic cells into injected muscles. J Immunol 2000, 165:3772-3781.
  • [21]Pan PY, Li Y, Li Q, Gu P, Martinet O, Thung S, Chen SH: In situ recruitment of antigen-presenting cells by intratumoral GM-CSF gene delivery. Cancer Immunol Immunother 2004, 53:17-25.
  • [22]Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I: High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res 2004, 64:6337-6343.
  • [23]Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G, Rivoltini L: Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 2007, 25:2546-2553.
  • [24]Suzuki J, Ricordi C, Chen Z: Immune tolerance induction by integrating innate and adaptive immune regulators. Cell Transplant 2010, 19:253-268.
  • [25]Yang R, Cai Z, Zhang Y, Yutzy WH, Roby KF, Roden RB: CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1?+?CD11b?+?myeloid cells. Cancer Res 2006, 66:6807-6815.
  • [26]Liu Y, Yu Y, Yang S, Zeng B, Zhang Z, Jiao G, Zhang Y, Cai L, Yang R: Regulation of arginase I activity and expression by both PD-1 and CTLA-4 on the myeloid-derived suppressor cells. Cancer Immunol Immunother 2009, 58:687-697.
  • [27]van Cruijsen H, Hoekman K, Stam AG, van den Eertwegh AJ, Kuenen BC, Scheper RJ, Giaccone G, de Gruijl TD: Defective differentiation of myeloid and plasmacytoid dendritic cells in advanced cancer patients is not normalized by tyrosine kinase inhibition of the vascular endothelial growth factor receptor. Clin Dev Immunol 2007, 2007:17315.
  • [28]van Cruijsen H, van der Veldt AA, Vroling L, Oosterhoff D, Broxterman HJ, Scheper RJ, Giaccone G, Haanen JB, van den Eertwegh AJ, Boven E, Hoekman K, de Gruijl TD: Sunitinib-induced myeloid lineage redistribution in renal cell cancer patients: CD1c?+?dendritic cell frequency predicts progression-free survival. Clin Cancer Res 2008, 14:5884-5892.
  • [29]Halabi S, Small EJ, Kantoff PW, Kattan MW, Kaplan EB, Dawson NA, Levine EG, Blumenstein BA, Vogelzang NJ: Prognostic model for predicting survival in men with hormone-refractory metastatic prostate cancer. J Clin Oncol 2003, 21:1232-1237.
  • [30]Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S: CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008, 322:271-275.
  • [31]Han Y, Chen Z, Yang Y, Jiang Z, Gu Y, Liu Y, Lin C, Pan Z, Yu Y, Jiang M, Zhou W, Cao X: Human CD14 CTLA-4 regulatory dendritic cells suppress T cell response via CTLA-4-dependent IL-10 and IDO production in hepatocellular carcinoma. Hepatology 2014, 59:567-579.
  • [32]Laurent S, Carrega P, Saverino D, Piccioli P, Camoriano M, Morabito A, Dozin B, Fontana V, Simone R, Mortara L, Mingari MC, Ferlazzo G, Pistillo MP: CTLA-4 is expressed by human monocyte-derived dendritic cells and regulates their functions. Hum Immunol 2010, 71:934-941.
  • [33]Schakel K, Kannagi R, Kniep B, Goto Y, Mitsuoka C, Zwirner J, Soruri A, Von KM, Rieber E: 6-Sulfo LacNAc, a novel carbohydrate modification of PSGL-1, defines an inflammatory type of human dendritic cells. Immunity 2002, 17:289-301.
  • [34]Liu CY, Wang YM, Wang CL, Feng PH, Ko HW, Liu YH, Wu YC, Chu Y, Chung FT, Kuo CH, Lee KY, Lin SM, Lin HC, Wang CH, Yu CT, Kuo HP: Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14(-)/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer. J Cancer Res Clin Oncol 2010, 136:35-45.
  • [35]Vuk-Pavlovic S, Bulur PA, Lin Y, Qin R, Szumlanski CL, Zhao X, Dietz AB: Immunosuppressive CD14?+?HLA-DRlow/- monocytes in prostate cancer. Prostate 2010, 70:443-455.
  • [36]Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW: Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 2011, 60:1419-1430.
  • [37]Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, Greten TF, Korangy F: A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4 (+) CD25 (+) Foxp3 (+) T cells. Gastroenterology 2008, 135:234-243.
  • [38]Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O¿Neill A, Mier J, Ochoa AC: Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 2005, 65:3044-3048.
  • [39]Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, Staehler M, Brugger W, Dietrich PY, Mendrzyk R, Hilf N, Schoor O, Fritsche J, Mahr A, Maurer D, Vass V, Trautwein C, Lewandrowski P, Flohr C, Pohla H, Stanczak JJ, Bronte V, Mandruzzato S, Biedermann T, Pawelec G, Derhovanessian E, Yamagishi H, Miki T, Hongo F, Takaha N, et al.: Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 2012, 18:1254-1261.
  • [40]Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ: Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 2009, 58:49-59.
  • [41]Johansson CC, Mougiakakos D, Trocme E, II-Ericsson C, Economou MA, Larsson O, Seregard S, Kiessling R: Expression and prognostic significance of iNOS in uveal melanoma. Int J Cancer 2010, 126:2682-2689.
  • [42]Gabrilovich DI, Ostrand-Rosenberg S, Bronte V: Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012, 12:253-268.
  • [43]Gorczyca W, Sun ZY, Cronin W, Li X, Mau S, Tugulea S: Immunophenotypic pattern of myeloid populations by flow cytometry analysis. Methods Cell Biol 2011, 103:221-266.
  • [44]Duffy A, Zhao F, Haile L, Gamrekelashvili J, Fioravanti S, Ma C, Kapanadze T, Compton K, Figg WD, Greten TF: Comparative analysis of monocytic and granulocytic myeloid-derived suppressor cell subsets in patients with gastrointestinal malignancies. Cancer Immunol Immunother 2012, 62:299-307.
  • [45]Bouwhuis MG, Ten Hagen TL, Suciu S, Eggermont AM: Autoimmunity and treatment outcome in melanoma. Curr Opin Oncol 2011, 23:170-176.
  • [46]Weber J: Ipilimumab: controversies in its development, utility and autoimmune adverse events. Cancer Immunol Immunother 2009, 58:823-830.
  • [47]Weber J, Thompson JA, Hamid O, Minor D, Amin A, Ron I, Ridolfi R, Assi H, Maraveyas A, Berman D, Siegel J, O¿Day SJ: A randomized, double-blind, placebo-controlled, phase II study comparing the tolerability and efficacy of ipilimumab administered with or without prophylactic budesonide in patients with unresectable stage III or IV melanoma. Clin Cancer Res 2009, 15:5591-5598.
  • [48]Simons JW, Carducci MA, Mikhak B, Lim M, Biedrzycki B, Borellini F, Clift SM, Hege KM, Ando DG, Piantadosi S, Mulligan R, Nelson WG: Phase I/II trial of an allogeneic cellular immunotherapy in hormone-naive prostate cancer. Clin Cancer Res 2006, 12:3394-3401.
  • [49]Scher HI, Halabi S, Tannock I, Morris M, Sternberg CN, Carducci MA, Eisenberger MA, Higano C, Bubley GJ, Dreicer R, Petrylak D, Kantoff P, Basch E, Kelly WK, Figg WD, Small EJ, Beer TM, Wilding G, Martin A, Hussain M: Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol 2008, 26:1148-1159.
  • [50]Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, Buck DW, Schmitz J: BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 2000, 165:6037-6046.
  • [51]Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, Scherberich J, Schmitz J, Shortman K, Sozzani S, Strobl H, Zembala M, Austyn JM, Lutz MB: Nomenclature of monocytes and dendritic cells in blood. Blood 2010, 116:e74-e80.
  • [52]Schakel K, Mayer E, Federle C, Schmitz M, Riethmuller G, Rieber EP: A novel dendritic cell population in human blood: one-step immunomagnetic isolation by a specific mAb (M-DC8) and in vitro priming of cytotoxic T lymphocytes. Eur J Immunol 1998, 28:4084-4093.
  • [53]Halabi S, Lin CY, Kelly WK, Fizazi KS, Moul JW, Kaplan EB, Morris MJ, Small EJ: Updated prognostic model for predicting overall survival in first-line chemotherapy for patients with metastatic castration-resistant prostate cancer. J Clin Oncol 2014, 32:671-677.
  文献评价指标  
  下载次数:47次 浏览次数:31次