期刊论文详细信息
Epigenetics & Chromatin
Dynamic changes in DNA modification states during late gestation male germ line development in the rat
Amanda J Drake2  Richard R Meehan3  Richard M Sharpe1  Sander van den Driesche1  Catherine M Rose2 
[1] MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK;Endocrinology Unit, University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK;MRC Human Genetics Unit, IGMM, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
关键词: Thymine DNA Glycosylase;    5-carboxylcytosine;    5-formylcytosine;    5-hydroxymethylcytosine;    5-methylcytosine;    DNA modification;    Rat;    Germ cells;   
Others  :  1120566
DOI  :  10.1186/1756-8935-7-19
 received in 2014-04-08, accepted in 2014-07-23,  发布年份 2014
PDF
【 摘 要 】

Background

Epigenetic reprogramming of fetal germ cells involves the genome-wide erasure and subsequent re-establishment of DNA methylation. Mouse studies indicate that DNA demethylation may be initiated at embryonic day (e) 8 and completed between e11.5 and e12.5. In the male germline, DNA remethylation begins around e15 and continues for the remainder of gestation whilst this process occurs postnatally in female germ cells. Although 5-methylcytosine (5mC) dynamics have been extensively characterised, a role for the more recently described DNA modifications (5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC)) remains unclear. Moreover, the extent to which the developmental dynamics of 5mC reprogramming is conserved across species remains largely undetermined. Here, we sought to describe this process during late gestation in the male rat.

Results

Using immunofluorescence, we demonstrate that 5mC is re-established between e18.5 and e21.5 in the rat, subsequent to loss of 5hmC, 5fC and 5caC, which are present in germ cells between e14.5 and e16.5. All of the evaluated DNA methyl forms were expressed in testicular somatic cells throughout late gestation. 5fC and 5caC can potentially be excised through Thymine DNA Glycosylase (TDG) and repaired by the base excision repair (BER) pathway, implicating 5mC oxidation in active DNA demethylation. In support of this potential mechanism, we show that TDG expression is coincident with the presence of 5hmC, 5fC and 5caC in male germ cell development.

Conclusion

The developmental dependent changes in germ cell DNA methylation patterns suggest that they are linked with key stages of male rat germline progression.

【 授权许可】

   
2014 Rose et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150210041840589.pdf 7599KB PDF download
Figure 10. 292KB Image download
Figure 9. 274KB Image download
Figure 8. 310KB Image download
Figure 7. 315KB Image download
Figure 6. 312KB Image download
Figure 5. 299KB Image download
Figure 4. 304KB Image download
Figure 3. 312KB Image download
Figure 2. 334KB Image download
Figure 1. 31KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Reddington J, Perricone S, Nestor C, Reichmann J, Youngson N, Suzuki M, Reinhardt D, Dunican D, Prendergast J, Mjoseng H, Ramsahoye B, Whitelaw E, Greally J, Adams I, Bickmore W, Meehan RR: Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb target genes. Genome Biol 2013, 14:R25. BioMed Central Full Text
  • [2]Reddington JP, Pennings S, Meehan RR: Non-canonical functions of the DNA methylome in gene regulation. Biochem J 2013, 451:13-23.
  • [3]Bird A: DNA methylation patterns and epigenetic memory. Genes Dev 2002, 16:6-21.
  • [4]Hackett JA, Reddington J, Nestor C, Dunican DS, Branco M, Reichmann J, Reik W, Surani MA, Adams IR, Meehan RR: Promoter DNA methylation couples genome-defence mechanisms to epigenetic reprogramming in the mouse germline. Development 2012, 139:3623-3632.
  • [5]Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA: Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 2002, 117:15-23.
  • [6]De Felici M: Nuclear reprogramming in mouse primordial germ cells: epigenetic contribution. Stem Cells Int 2011, 2011:425863.
  • [7]Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA: Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 2010, 329:78-82.
  • [8]Hajkova P: Epigenetic reprogramming in the germline: towards the ground state of the epigenome. Philos Trans R Soc Lond B Biol Sci 2011, 366:2266-2273.
  • [9]Culty M: Gonocytes, the forgotten cells of the germ cell lineage. Birth Defects Research Part C 2009, 87:1-26.
  • [10]Borgel J, Guibert S, Li Y, Chiba H, Schubeler D, Sasaki H, Forne T, Weber M: Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet 2010, 42:1093-1100.
  • [11]Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES: Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008, 454:766-770.
  • [12]Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, Stadler MB, Bibel M, Schubeler D: Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 2008, 30:755-766.
  • [13]Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA, Surani MA: Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 2013, 339:448-452.
  • [14]Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, Popp C, Thienpont B, Dean W, Reik W: The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 2012, 48:849-862.
  • [15]Guibert S, Forne T, Weber M: Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res 2012, 22:633-641.
  • [16]Crichton J, Dunican D, MacLennan M, Meehan R, Adams I: Defending the genome from the enemy within: mechanisms of retrotransposon suppression in the mouse germline. Cell Mol Life Sci 2014, 71:1581-1605.
  • [17]Lees-Murdock DJ, De Felici M, Walsh CP: Methylation dynamics of repetitive DNA elements in the mouse germ cell lineage. Genomics 2003, 82:230-237.
  • [18]Li JY, Lees-Murdock DJ, Xu GL, Walsh CP: Timing of establishment of paternal methylation imprints in the mouse. Genomics 2004, 84:952-960.
  • [19]Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, Sato S, Hata K, Andrews SR, Kelsey G: Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet 2011, 43:811-814.
  • [20]Coffigny H, Bourgeois C, Ricoul M, Bernardino J, Vilain A, Niveleau A, Malfoy B, Dutrillaux B: Alterations of DNA methylation patterns in germ cells and Sertoli cells from developing mouse testis. Cytogenet Cell Genet 1999, 87:175-181.
  • [21]Lucifero D, Mertineit C, Clarke HJ, Bestor TH, Trasler JM: Methylation dynamics of imprinted genes in mouse germ cells. Genomics 2002, 79:530-538.
  • [22]Beaujean N, Hartshorne G, Cavilla J, Taylor J, Gardner J, Wilmut I, Meehan R, Young L: Non-conservation of mammalian preimplantation methylation dynamics. Curr Biol 2004, 14:R266-R267.
  • [23]Beaujean N, Taylor JE, McGarry M, Gardner JO, Wilmut I, Loi P, Ptak G, Galli C, Lazzari G, Bird A, Young LE, Meehan RR: The effect of interspecific oocytes on demethylation of sperm DNA. Proc Natl Acad Sci U S A 2004, 101:7636-7640.
  • [24]Young LE, Beaujean N: DNA methylation in the preimplantation embryo: the differing stories of the mouse and sheep. Anim Reprod Sci 2004, 82:61-78.
  • [25]Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324:930-935.
  • [26]Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y: Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010, 466:1129-1133.
  • [27]Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho A, Tahiliani M, Sommer CA, Mostoslavsky G, Lahesmaa R, Orkin SH, Rodig SJ, Daley GQ, Rao A: Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 2011, 8:200-213.
  • [28]Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M, Arand J, Nakano T, Reik W, Walter J: 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2011, 2:241.
  • [29]Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333:1300-1303.
  • [30]Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang B, Godley LA, Hicks LM, Lahn BT, Jin P, Chuan H: Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 2011, 29:68-72.
  • [31]Stroud H, Feng S, Morey Kinney S, Pradhan S, Jacobsen SE: 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol 2011, 12:R54. BioMed Central Full Text
  • [32]Nestor CE, Ottaviano R, Reddington J, Sproul D, Reinhardt D, Dunican D, Katz E, Dixon JM, Harrison DJ, Meehan RR: Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res 2012, 22:467-477.
  • [33]Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W: Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 2011, 473:398-402.
  • [34]Liu Y, Liu P, Yang C, Cowley AW, Liang M: Base-resolution maps of 5-methylcytosine and 5-hydroxymethylcytosine in Dahl S rats: Effect of salt and genomic sequence. Hypertension 2014, 63:827-838.
  • [35]Kellinger MW, Song CX, Chong J, Lu XY, He C, Wang D: 5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription. Nat Struct Mol Biol 2012, 19:831-833.
  • [36]Almeida RD, Sottile V, Loose M, De Sousa PA, Johnson AD, Ruzov A: Semi-quantitative immunohistochemical detection of 5-hydroxymethyl-cytosine reveals conservation of its tissue distribution between amphibians and mammals. Epigenetics 2012, 7:137-140.
  • [37]Inoue A, Shen L, Dai Q, He C, Zhang Y: Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res 2011, 21:1670-1676.
  • [38]Iqbal K, Jin SG, Pfeifer GP, Szabo PE: Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci U S A 2011, 108:3642-3647.
  • [39]Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi LY, He XY, Jin SG, Iqbal K, Shi YG, Deng Z, Szabo G, Pfeifer GP, Li J, Xu GL: The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 2011, 477:606-U136.
  • [40]Inoue A, Zhang Y: Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 2011, 334:194.
  • [41]Santos F, Peat J, Burgess H, Rada C, Reik W, Dean W: Active demethylation in mouse zygotes involves cytosine deamination and base excision repair. Epigenetics Chromatin 2013, 6:39. BioMed Central Full Text
  • [42]Yamaguchi S, Hong K, Liu R, Inoue A, Shen L, Zhang K, Zhang Y: Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during germ cell reprogramming. Cell Res 2013, 23:329-339.
  • [43]Raiber E-A, Beraldi D, Ficz G, Burgess H, Branco M, Murat P, Oxley D, Booth M, Reik W, Balasubramanian S: Genome-wide distribution of 5-formylcytosine in ES cells is associated with transcription and depends on thymine DNA glycosylase. Genome Biol 2012, 13:R69. BioMed Central Full Text
  • [44]Song C-X, Szulwach Keith E, Dai Q, Fu Y, Mao S-Q, Lin L, Street C, Li Y, Poidevin M, Wu H, Gao J, Liu P, Li L, Xu GL, Jin P, He C: Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 2013, 153:678-691.
  • [45]He YF, Li B-Z, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song C-X, Zhang K, He C, Xu G-L: Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333:1303-1307.
  • [46]Vincent JJ, Huang Y, Chen P-Y, Feng S, Calvopiña Joseph H, Nee K, Lee Serena A, Le T, Yoon Alexander J, Faull K, Fan G, Rao A, Jacobsen SE, Pellegrini M, Clark AT: Stage-specific roles for Tet1 and Tet2 in DNA demethylation in primordial germ cells. Cell Stem Cell 2013, 12:470-478.
  • [47]Maiti A, Drohat AC: Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 2011, 286:35334-35338.
  • [48]Shen L, Wu H, Diep D, Yamaguchi S, D’Alessio Ana C, Fung H-L, Zhang K, Zhang Y: Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 2013, 153:692-706.
  • [49]Hackett JA, Zylicz JJ, Surani MA: Parallel mechanisms of epigenetic reprogramming in the germline. Trends Genet 2012, 28:164-174.
  • [50]Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, Jacobsen SE, Reik W: Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 2010, 463:1101-1105.
  • [51]Yamazaki Y, Mann MR, Lee SS, Marh J, McCarrey JR, Yanagimachi R, Bartolomei MS: Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc Natl Acad Sci U S A 2003, 100:12207-12212.
  • [52]Kafri T, Ariel M, Brandeis M, Shemer R, Urven L, McCarrey J, Cedar H, Razin A: Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev 1992, 6:705-714.
  • [53]Hefler LA, Tempfer CB, Moreno RM, O'Brien WE, Gregg AR: Endothelial-derived nitric oxide and angiotensinogen: blood pressure and metabolism during mouse pregnancy. Am J Physiol Regul Integr Comp Physiol 2001, 280:R174-R182.
  • [54]Hyldig S, Croxall N, Contreras D, Thomsen P, Alberio R: Epigenetic reprogramming in the porcine germ line. BMC Dev Biol 2011, 11:11. BioMed Central Full Text
  • [55]Almstrup K, Nielsen JE, Mlynarska O, Jansen MT, Jorgensen A, Skakkebak NE, Rajpert-De Meyts E: Carcinoma in situ testis displays permissive chromatin modifications similar to immature foetal germ cells. Br J Cancer 2010, 103:1269-1276.
  • [56]Wermann H, Stoop H, Gillis AJM, Honecker F, van Gurp RJ, Ammerpohl O, Richter J, Oosterhuis JW, Bokemeyer C, Looijenga LHJ: Global DNA methylation in fetal human germ cells and germ cell tumours: association with differentiation and cisplatin resistance. J Pathol 2010, 221:433-442.
  • [57]Nettersheim D, Heukamp LC, Fronhoffs F, Grewe MJ, Haas N, Waha A, Honecker F, Waha A, Kristiansen G, Schorle H: Analysis of TET expression/activity and 5mC oxidation during normal and malignant germ cell development. PLoS One 2013, 8:e82881.
  • [58]Salvaing J, Aguirre-Lavin T, Boulesteix C, Lehmann G, Debey P, Beaujean N: 5-methylcytosine and 5-hydroxymethylcytosine spatiotemporal profiles in the mouse zygote. PLoS One 2012, 7:e38156.
  • [59]Drake AJ, Liu L, Kerrigan D, Meehan RR, Seckl JR: Multigenerational programming in the glucocorticoid programmed rat is associated with generation-specific and parent of origin effects. Epigenetics 2011, 6:1334-1343.
  • [60]Drake AJ, Walker BR, Seckl JR: Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am J Physiol 2005, 288:R34-R38.
  • [61]Radford EJ, Isganaitis E, Jimenez-Chillaron J, Schroeder J, Molla M, Andrews S, Didier N, Charalambous M, McEwen K, Marazzi G, Sassoon D, Patti M-E, Ferguson-Smith AC: An unbiased assessment of the role of imprinted genes in an intergenerational model of developmental programming. PLoS Genet 2012, 8:e1002605.
  • [62]Drake AJ, Liu L: Intergenerational transmission of programmed effects: public health consequences. Trends Endocrinol Metab 2010, 21:206-213.
  • [63]Daxinger L, Whitelaw E: Transgenerational epigenetic inheritance: more questions than answers. Genome Res 2010, 20:1623-1628.
  • [64]Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E, Seisenberger S, Hore TA, Reik W, Erkek S, Peters AHFM, Patti M-E, Ferguson-Smith AC: In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 2014. 10.1126/science.1255903
  文献评价指标  
  下载次数:145次 浏览次数:11次