期刊论文详细信息
Diagnostic Pathology
A time course-dependent metastatic gene expression signature predicts outcome in human metastatic melanomas
Jiaxi Lin1  Nan Li1  Ying Zhou1  Guoxue Zhang1  Rongyi Chen1 
[1] Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
关键词: Gene signature;    Prediction;    Prognosis;    Metastasis;    Melanomas;   
Others  :  1150023
DOI  :  10.1186/s13000-014-0155-2
 received in 2014-05-13, accepted in 2014-07-29,  发布年份 2014
PDF
【 摘 要 】

Background

The prognosis of patients with metastatic melanomas is extremely heterogeneous. Therefore, identifying high-risk subgroups by using innovative prediction models would help to improve selection of appropriate management options.

Methods

In this study, two datasets (GSE7929 and GSE7956) of mRNA expression microarray in an animal melanoma model were normalized by frozen Robust Multi-Array Analysis and then combined by the distance-weighted discrimination method to identify time course-dependent metastasis-related gene signatures by Biometric Research Branch-ArrayTools (BRB)-ArrayTools. Then two datasets (GSE8401 and GSE19234) of clinical melanoma samples with relevant clinical and survival data were used to validate the prognosis signature.

Results

A novel 192-gene set that varies significantly in parallel with the increasing of metastatic potentials was identified in the animal melanoma model. Further, this gene signature was validated to correlate with poor prognosis of human metastatic melanomas but not of primary melanomas in two independent datasets. Furthermore, multivariate Cox proportional hazards regression analyses demonstrated that the prognostic value of the 192-gene set is independent of the TNM stage and has higher areas under the receiver operating characteristic curve than stage information in both validation datasets.

Conclusion

Our findings suggest that a time course-dependent metastasis-related gene expression signature is useful in predicting survival of malignant melanomas and might be useful in informing treatment decisions for these patients.

【 授权许可】

   
2014 Chen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405130559462.pdf 1897KB PDF download
Figure 4. 29KB Image download
Figure 3. 52KB Image download
Figure 2. 205KB Image download
Figure 1. 81KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Huang YS, Chen XX, Yang SX, Wu LS, Zhao JY, Li XY, Tu P, Li H: Preliminary exploration of the clinical features of Chinese patients with skin malignancies and premalignancies: a retrospective study of 1420 cases from Peking University First Hospital. J Eur Acad Dermatol Venereol 2013, 27:1114-1119.
  • [2]Tsao H, Atkins MB, Sober AJ: Management of cutaneous melanoma. N Engl J Med 2004, 351:998-1012.
  • [3]Nodin B, Fridberg M, Jonsson L, Bergman J, Uhlen M, Jirstrom K: High MCM3 expression is an independent biomarker of poor prognosis and correlates with reduced RBM3 expression in a prospective cohort of malignant melanoma. Diagn Pathol 2012, 7:82. BioMed Central Full Text
  • [4]Schilling B, Bielefeld N, Sucker A, Hillen U, Zimmer L, Schadendorf D, Zeschnigk M, Griewank KG: Lack of SF3B1 R625 mutations in cutaneous melanoma. Diagn Pathol 2013, 8:87. BioMed Central Full Text
  • [5]Van De Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ: A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002, 347:1999-2009.
  • [6]Beer DG, Kardia SL, Huang C-C, Giordano TJ, Levin AM, Misek DE, Lin L, Chen G, Gharib TG, Thomas DG: Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 2002, 8:816-824.
  • [7]Xu L, Shen SS, Hoshida Y, Subramanian A, Ross K, Brunet J-P, Wagner SN, Ramaswamy S, Mesirov JP, Hynes RO: Gene expression changes in an animal melanoma model correlate with aggressiveness of human melanoma metastases. Mol Cancer Res 2008, 6:760-769.
  • [8]Bogunovic D, O’Neill DW, Belitskaya-Levy I, Vacic V, Yu Y-L, Adams S, Darvishian F, Berman R, Shapiro R, Pavlick AC: Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proc Natl Acad Sci 2009, 106:20429-20434.
  • [9]McCall MN, Irizarry RA: Thawing frozen robust multi-array analysis (fRMA). BMC Bioinformatics 2011, 12:369. BioMed Central Full Text
  • [10]Marron J, Todd MJ, Ahn J: Distance-weighted discrimination. J Am Stat Assoc 2007, 102:1267-1271.
  • [11]Simon R, Lam A, Li M-C, Ngan M, Menenzes S, Zhao Y: Analysis of gene expression data using BRB-Array Tools. Cancer Inform 2007, 3:11.
  • [12]Chen H, Takahara M, Oba J, Xie L, Chiba T, Takeuchi S, Tu Y, Nakahara T, Uchi H, Moroi Y: Clinicopathologic and prognostic significance of SATB1 in cutaneous malignant melanoma. J Dermatol Sci 2011, 64:39-44.
  • [13]Grover R, Ross D, Wilson G, Sanders R: Measurement of c-myc oncoprotein provides an independent prognostic marker for regional metastatic melanoma. Br J Plast Surg 1997, 50:478-482.
  • [14]Horst B, Gruvberger-Saal SK, Hopkins BD, Bordone L, Yang Y, Chernoff KA, Uzoma I, Schwipper V, Liebau J, Nowak NJ: Gab2-mediated signaling promotes melanoma metastasis. Am J Pathol 2009, 174:1524-1533.
  • [15]Williams MD, Esmaeli B, Soheili A, Simantov R, Gombos DS, Bedikian AY, Hwu P: GPNMB expression in uveal melanoma: a potential for targeted therapy. Melanoma Res 2010, 20:184-190.
  文献评价指标  
  下载次数:51次 浏览次数:9次