期刊论文详细信息
Fluids and Barriers of the CNS
Host matrix metalloproteinases in cerebral malaria: new kids on the block against blood–brain barrier integrity?
Mauro Prato1  Manuela Polimeni2 
[1] Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italy;Dipartimento di Oncologia, Università di Torino, Torino, Italy
关键词: Inflammation;    Matrix metalloproteinases (MMPs);    Blood–brain barrier (BBB);    Plasmodium;    Cerebral malaria (CM);   
Others  :  806159
DOI  :  10.1186/2045-8118-11-1
 received in 2013-11-25, accepted in 2014-01-24,  发布年份 2014
PDF
【 摘 要 】

Cerebral malaria (CM) is a life-threatening complication of falciparum malaria, associated with high mortality rates, as well as neurological impairment in surviving patients. Despite disease severity, the etiology of CM remains elusive. Interestingly, although the Plasmodium parasite is sequestered in cerebral microvessels, it does not enter the brain parenchyma: so how does Plasmodium induce neuronal dysfunction? Several independent research groups have suggested a mechanism in which increased blood–brain barrier (BBB) permeability might allow toxic molecules from the parasite or the host to enter the brain. However, the reported severity of BBB damage in CM is variable depending on the model system, ranging from mild impairment to full BBB breakdown. Moreover, the factors responsible for increased BBB permeability are still unknown. Here we review the prevailing theories on CM pathophysiology and discuss new evidence from animal and human CM models implicating BBB damage. Finally, we will review the newly-described role of matrix metalloproteinases (MMPs) and BBB integrity. MMPs comprise a family of proteolytic enzymes involved in modulating inflammatory response, disrupting tight junctions, and degrading sub-endothelial basal lamina. As such, MMPs represent potential innovative drug targets for CM.

【 授权许可】

   
2014 Polimeni and Prato; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708090734926.pdf 2386KB PDF download
Figure 5. 75KB Image download
Figure 4. 89KB Image download
Figure 3. 98KB Image download
Figure 2. 91KB Image download
Figure 1. 71KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]World Health Organization (WHO): World Malaria Report. Geneva: World Health Organization; 2013.
  • [2]Khadjavi A, Giribaldi G, Prato M: From control to eradication of malaria: the end of being stuck in second gear? Asian Pac J Trop Med 2010, 3:412-420.
  • [3]World Health Organization Malaria Policy Advisory Committee and Secretariat: Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of September 2012 meeting. Malar J 2012, 11:424.
  • [4]Mohanty S, Patel DK, Pati SS, Mishra SK: Adjuvant therapy in cerebral malaria. Indian J Med Res 2006, 124:245-260.
  • [5]John CC, Kutamba E, Mugarura K, Opoka RO: Adjunctive therapy for cerebral malaria and other severe forms of Plasmodium falciparum malaria. Expert Rev Anti Infect Ther 2010, 8:997-1008.
  • [6]Grau GE, Craig AG: Cerebral malaria pathogenesis: revisiting parasite and host contributions. Future Microbiol 2012, 7:291-302.
  • [7]Elsheikha HM, Khan NA: Protozoa traversal of the blood–brain barrier to invade the central nervous system. FEMS Microbiol Rev 2010, 34:532-553.
  • [8]Newton CR, Warrel DA: Neurological manifestations of falciparum malaria. Ann Neurol 1998, 43:695-702.
  • [9]Gitau EN, Newton CR: Review article: blood–brain barrier in falciparum malaria. Trop Med Int Health 2005, 10:285-292.
  • [10]World Health Organization (WHO): Guidelines for the treatment of malaria. Geneva: World Health Organization; 2006.
  • [11]Berkley JA, Mwangi I, Mellington F, Mwarumba S, Marsh K: Cerebral malaria versus bacterial meningitis in children with impaired consciousness. Q J Med 1999, 92:151-157.
  • [12]Newton CR, Krishna S: Severe falciparum malaria in children: current understanding of pathophysiology and supportive treatment. Pharmacol Therap 1998, 79:1-53.
  • [13]Coltel N, Combes V, Hunt NH, Grau GE: Cerebral malaria - a neurovascular pathology with many riddles still to be solved. Curr Neurovasc Res 2004, 1:91-110.
  • [14]Pino P, Taoufiq Z, Nitcheu J, Vouldoukis I, Mazier D: Blood–brain barrier breakdown during cerebral malaria: suicide or murder? Thromb Haemost 2005, 94:336-340.
  • [15]Medana IM, Turner GD: Human cerebral malaria and the blood–brain barrier. Int J Parasitol 2006, 36:5.
  • [16]Clark IA, Budd AC, Alleva LM, Cowden WB: Human malarial disease: a consequence of inflammatory cytokine release. Malar J 2006, 5:85. BioMed Central Full Text
  • [17]van der Heyde HC, Nolan J, Combes V, Gramaglia I, Grau GE: A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction. Trends Parasitol 2006, 22:503-508.
  • [18]Thomson JG, Annecke S: Observations of the pathology of the central nervous system in malignant tertian malaria, with remarks on certain clinical phenomena. J Trop Med Hyg 1926, 29:313-346.
  • [19]MacPherson GG, Warrell MJ, White NJ, Looareesuwan S, Warrell DA: Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol 1985, 119:385-401.
  • [20]Pongponratn E, Riganti M, Punpoowong B, Aikawa M: Microvascular sequestration of parasitized erythrocytes in human falciparum malaria: a pathological study. Am J Trop Med Hyg 1991, 44:168-175.
  • [21]Silamut K, Phu NH, Whitty C, Turner GD, Louwrier K, Mai NT, et al.: A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. Am J Pathol 1999, 155:395-410.
  • [22]Udeinya IJ, Schmidt JA, Aikawa M, Miller LH, Green I: Falciparum malaria-infected erythrocytes specifically bind to cultured human endothelial cells. Science 1981, 213:555-557.
  • [23]David PH, Hommel M, Miller LH, Udeinya IJ, Oligino LD: Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoadherence of infected erythrocytes. Proc Natl Acad Sci USA 1983, 80:5075-5079.
  • [24]Sherman IW, Eda S, Winograd E: Cytoadherence and sequestration in Plasmodium falciparum: defining the ties that bind. Microbes Infect 2003, 5:897-909.
  • [25]Chakravorty SJ, Craig A: The role of ICAM-1 in Plasmodium falciparum cytoadherence. Eur J Cell Biol 2005, 84:15-27.
  • [26]Dondorp AM, Angus BJ, Chotivanich K, Silamut K, Ruangveerayuth R, Hardeman MR, et al.: Red blood cell deformability as a predictor of anemia in severe falciparum malaria. Am J Trop Med Hyg 1999, 60:733-737.
  • [27]Dondorp AM, Angus BJ, Hardeman MR, Chotivanich KT, Silamut K, Ruangveerayuth R, et al.: Prognostic significance of reduced red blood cell deformability in severe falciparum malaria. Am J Trop Med Hyg 1997, 57:507-511.
  • [28]Udomsangpetch R, Webster HK, Pattanapanyasat K, Pitchayangkul S, Thaithong S: Cytoadherence characteristics of rosette-forming Plasmodium falciparum. Infect Immun 1992, 60:4483-4490.
  • [29]Angus BJ, Thanikkul K, Silamut K, White NJ, Udomsangpetch R: Short report: Rosette formation in Plasmodium ovale infection. Am J Trop Med Hyg 1996, 55:560-561.
  • [30]al-Yaman F, Genton B, Mokela D, Raiko A, Kati S, Rogerson S, et al.: Human cerebral malaria: lack of significant association between erythrocyte rosetting and disease severity. Trans R Soc Trop Med Hyg 1995, 89:55-58.
  • [31]Maegraith B, Fletcher A: The pathogenesis of mammalian malaria. Adv Parasitol 1972, 10:49-75.
  • [32]Adams S, Brown H, Turner G: Breaking down the blood–brain barrier: signaling a path to cerebral malaria? Trends Parasitol 2002, 18:360-366.
  • [33]Enwonwu CO, Afolabi BM, Salako LA, Idigbe EO, al-Hassan H, Rabiu RA: Hyperphenylalaninaemia in children with falciparum malaria. QJM 1999, 92:495-503.
  • [34]Enwonwu CO, Afolabi BM, Salako LO, Idigbe EO, Bashirelah N: Increased plasma levels of histidine and histamine in falciparum malaria: relevance to severity of infection. J Neural Transm 2000, 107:1273-1287.
  • [35]Beghdadi W, Porcherie A, Schneider BS, Dubayle D, Peronet R, Huerre M, et al.: Role of histamine and histamine receptors in the pathogenesis of malaria. Med Sci (Paris) 2009, 25:377-381.
  • [36]Beghdadi W, Porcherie A, Schneider BS, Dubayle D, Peronet R, Huerre M, et al.: Inhibition of histamine-mediated signaling confers significant protection against severe malaria in mouse models of disease. J Exp Med 2008, 205:395-408.
  • [37]Beghdadi W, Porcherie A, Schneider BS, Morisset S, Dubayle D, Peronet R, et al.: Histamine H(3) receptor-mediated signaling protects mice from cerebral malaria. PLoS One 2009, 4:6004.
  • [38]Clark IA, Virelizier JL, Carswell EA, Wood PR: Possible importance of macrophage-derived mediators in acute malaria. Infect Immun 1981, 32:1058-1066.
  • [39]Clark IA, Cowden WB: The pathophysiology of falciparum malaria. Pharmacol Ther 2003, 99:221-260.
  • [40]Clark IA, Alleva LM, Budd AC, Cowden WB: Understanding the role of inflammatory cytokines in malaria and related diseases. Travel Med Infect Dis 2008, 6:67-81.
  • [41]Hansen DS: Inflammatory responses associated with the induction of cerebral malaria: lessons from experimental murine models. PLoS Pathog 2012, 8:e1003045.
  • [42]Belnoue E, Kayibanda M, Vigario AM, Deschemin JC, van Rooijen N, Viguier M, et al.: On the pathogenic role of brain-sequestered alphabeta CD8+ T cells in experimental cerebral malaria. J Immunol 2002, 169:6369-6375.
  • [43]Belnoue E, Potter SM, Rosa DS, Mauduit M, Grüner AC, Kayibanda M, et al.: Control of pathogenic CD8+ T cell migration to the brain by IFN-gamma during experimental cerebral malaria. Parasite Immunol 2008, 30:544-553.
  • [44]Claser C, Malleret B, Gun SY, Wong AY, Chang ZW, Teo P, et al.: CD8+ T cells and IFN-γ mediate the time-dependent accumulation of infected red blood cells in deep organs during experimental cerebral malaria. PLoS One 2011, 6:e18720.
  • [45]Hansen DS, Bernard NJ, Nie CQ, Schofield L: NK cells stimulate recruitment of CXCR3+ T cells to the brain during Plasmodium berghei-mediated cerebral malaria. J Immunol 2007, 178:5779-5788.
  • [46]Gimenez F, Barraud de Lagerie S, Fernandez C, Pino P, Mazier D: Tumor necrosis factor alpha in the pathogenesis of cerebral malaria. Cell Mol Life Sci 2003, 60:1623-1635.
  • [47]Engwerda CR, Mynott TL, Sawhney S, De Souza JB, Bickle QD, Kaye PM: Locally up-regulated lymphotoxin alpha, not systemic tumor necrosis factor alpha, is the principle mediator of murine cerebral malaria. J Exp Med 2002, 195:1371-1377.
  • [48]Martins YC, Carvalho LJ, Daniel-Ribeiro CT: Challenges in the determination of early predictors of cerebral malaria: lessons from the human disease and the experimental murine models. Neuroimmunomodulation 2009, 16:134-145.
  • [49]Craig AG, Grau GE, Janse C, Kazura JW, Milner D, Barnwell JW, et al.: The role of animal models for research on severe malaria. PLoS Pathog 2012, 8:e1002401.
  • [50]Suidan GL, Pirko I, Johnson AJ: A potential role for CD8+ T-cells as regulators of CNS vascular permeability. Neurol Res 2006, 28:250-255.
  • [51]Suidan GL, Mcdole JR, Chen Y, Pirko I, Johnson AJ: Induction of blood brain barrier tight junction protein alterations by CD8 T cells. PLoS One 2008, 3:e3037.
  • [52]Suidan GL, Dickerson JW, Chen Y, McDole JR, Tripathi P, Pirko I, et al.: CD8 T cell-initiated vascular endothelial growth factor expression promotes central nervous system vascular permeability under neuroinflammatory conditions. J Immunol 2010, 184:1031-1040.
  • [53]Lundie RJ, de Koning-Ward TF, Davey GM, Nie CQ, Hansen DS, Lau LS, et al.: Blood-stage Plasmodium infection induces CD8+ T lymphocytes to parasite-expressed antigens, largely regulated by CD8alpha + dendritic cells. Proc Natl Acad Sci USA 2008, 105:14509-14514.
  • [54]Miyakoda M, Kimura D, Yuda M, Chinzei Y, Shibata Y, Honma K, Yui K: Malaria-specific and nonspecific activation of CD8+ T cells during blood stage of Plasmodium berghei infection. J Immunol 2008, 181:1420-1428.
  • [55]Howland SW, Poh CM, Gun SY, Claser C, Malleret B, Shastri N, et al.: Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria. EMBO Mol Med 2013, 5:916-931.
  • [56]Jambou R, Combes V, Jambou MJ, Weksler BB, Couraud PO, Grau GE: Plasmodium falciparum adhesion on human brain microvascular endothelial cells involves transmigration-like cup formation and induces opening of intercellular junctions. PLoS Pathog 2010, 6:e1001021.
  • [57]Yui K: Cross-presentation of malaria antigen by brain microvessels: why CD8(+) T cells are critical for the pathogenesis of experimental cerebral malaria. EMBO Mol Med 2013, 5:899-901.
  • [58]Grau GE, Fajardo LF, Piguet PF, Allet B, Lambert PH, Vassalli P: Tumor necrosis factor (cachectin) as an essential mediator in murine cerebral malaria. Science 1987, 237:1210-1212.
  • [59]Rudin W, Eugster HP, Bordmann G, Bonato J, Müller M, Yamage M, Ryffel B: Resistance to cerebral malaria in tumor necrosis factor-alpha/beta-deficient mice is associated with a reduction of intercellular adhesion molecule-1 up-regulation and T helper type 1 response. Am J Pathol 1997, 150:257-266.
  • [60]de Miranda AS, Lacerda-Queiroz N, de Carvalho Vilela M, Rodrigues DH, Rachid MA, Quevedo J, Teixeira AL: Anxiety-like behavior and proinflammatory cytokine levels in the brain of C57BL/6 mice infected with Plasmodium berghei (strain ANKA). Neurosci Lett 2011, 491:202-206.
  • [61]Wu JJ, Chen G, Liu J, Wang T, Zheng W, Cao YM: Natural regulatory T cells mediate the development of cerebral malaria by modifying the pro-inflammatory response. Parasitol Int 2010, 59:232-241.
  • [62]Parekh SB, Bubb WA, Hunt NH, Rae C: Brain metabolic markers reflect susceptibility status in cytokine gene knockout mice with murine cerebral malaria. Int J Parasitol 2006, 36:1409-1418.
  • [63]Amante FH, Haque A, Stanley AC, Rivera Fde L, Randall LM, Wilson YA, et al.: Immune-mediated mechanisms of parasite tissue sequestration during experimental cerebral malaria. J Immunol 2010, 185:3632-3642.
  • [64]Esamai F, Ernerudh J, Janols H, Welin S, Ekerfelt C, Mining S, Forsberg P: Cerebral malaria in children: serum and cerebrospinal fluid TNF-alpha and TGF-beta levels and their relationship to clinical outcome. J Trop Pediatr 2003, 49:216-223.
  • [65]Armah HB, Wilson NO, Sarfo BY, Powell MD, Bond VC, Anderson W, et al.: Cerebrospinal fluid and serum biomarkers of cerebral malaria mortality in Ghanaian children. Malar J 2007, 6:147. BioMed Central Full Text
  • [66]Jain V, Armah HB, Tongren JE, Ned RM, Wilson NO, Crawford S: Plasma IP-10, apoptotic and angiogenic factors associated with fatal cerebral malaria in India. Malar J 2008, 7:83. BioMed Central Full Text
  • [67]Thuma PE, van Dijk J, Bucala R, Debebe Z, Nekhai S, Kuddo T: Distinct clinical and immunologic profiles in severe malarial anemia and cerebral malaria in Zambia. J Infect Dis 2011, 203:211-219.
  • [68]Lovegrove FE, Tangpukdee N, Opoka RO, Lafferty EI, Rajwans N, Hawkes M: Serum angiopoietin-1 and -2 levels discriminate cerebral malaria from uncomplicated malaria and predict clinical outcome in African children. PLoS One 2009, 4:e4912.
  • [69]Prakash D, Fesel C, Jain R, Cazenave PA, Mishra GC, Pied S: Clusters of cytokines determine malaria severity in Plasmodium falciparum-infected patients from endemic areas of Central India. J Infect Dis 2006, 194:198-207.
  • [70]Stevenson MM, Su Z, Sam H, Mohan K: Modulation of host responses to blood-stage malaria by interleukin-12: from therapy to adjuvant activity. Microbes Infect 2001, 3:49-59.
  • [71]Marquet S, Doumbo O, Cabantous S, Poudiougou B, Argiro L, Safeukui I: A functional promoter variant in IL12B predisposes to cerebral malaria. Hum Mol Genet 2008, 17:2190-2195.
  • [72]Sanni LA: The role of cerebral oedema in the pathogenesis of cerebral malaria. Redox Rep 2001, 6:137-142.
  • [73]Hansen AM, Driussi C, Turner V, Takikawa O, Hunt NH: Tissue distribution of indoleamine 2,3-dioxygenase in normal and malaria-infected tissue. Redox Rep 2000, 5:112-115.
  • [74]Anstey NM, Weinberg JB, Hassanali MY, Mwaikambo ED, Manyenga D, Misukonis MA, et al.: Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J Exp Med 1996, 184:557-567.
  • [75]Hobbs MR, Udhayakumar V, Levesque MC, Booth J, Roberts JM, Tkachuk AN, et al.: A new NOS2 promoter polymorphism associated with increased nitric oxide production and protection from severe malaria in Tanzanian and Kenyan children. Lancet 2002, 360:1468-1475.
  • [76]Lopansri BK, Anstey NM, Weinberg JB, Stoddard GJ, Hobbs MR, Levesque MC, et al.: Low plasma arginine concentrations in children with cerebral malaria and decreased nitric oxide production. Lancet 2003, 361:676-678.
  • [77]Yeo TW, Lampah DA, Gitawati R, Tjitra E, Kenangalem E, McNeil YR, et al.: Impaired nitric oxide bioavailability and L-arginine reversible endothelial dysfunction in adults with falciparum malaria. J Exp Med 2007, 204:2693-2704.
  • [78]Sobolewski P, Gramaglia I, Frangos J, Intaglietta M, van der Heyde HC: Nitric oxide bioavailability in malaria. Trends Parasitol 2005, 21:415-422.
  • [79]Gramaglia I, Sobolewski P, Meays D, Contreras R, Nolan JP, Frangos JA, et al.: Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria. Nat Med 2006, 12:1417-1422.
  • [80]Serghides L, Kim H, Lu Z, Kain DC, Miller C, Francis RC, et al.: Inhaled nitric oxide reduces endothelial activation and parasite accumulation in the brain, and enhances survival in experimental cerebral malaria. PLoS One 2011, 6:e27714.
  • [81]Zanini GM, Cabrales P, Barkho W, Frangos JA, Carvalho LJ: Exogenous nitric oxide decreases brain vascular inflammation, leakage and venular resistance during Plasmodium berghei ANKA infection in mice. J Neuroinflamm 2011, 8:66. BioMed Central Full Text
  • [82]Yeo TW, Lampah DA, Rooslamiati I, Gitawati R, Tjitra E, Kenangalem E, et al.: A randomized pilot study of L-arginine infusion in severe falciparum malaria: preliminary safety, efficacy and pharmacokinetics. PLoS One 2013, 8:e69587.
  • [83]Das BS, Mohanty S, Mishra SK, Patnaik JK, Satpathy SK, Mohanty D, Bose TK: Increased cerebrospinal fluid protein and lipid peroxidation products in patients with cerebral malaria. Trans R Soc Trop Med Hyg 1991, 85:733-734.
  • [84]Das BS, Patnaik JK, Mohanty S, Mishra SK, Mohanty D, Satpathy SK, et al.: Plasma antioxidants and lipid peroxidation products in falciparum malaria. Am J Trop Med Hyg 1993, 49:720-725.
  • [85]Mishra NC, Kabilan L, Sharma A: Oxidative stress and malaria-infected erythrocytes. Indian J Malariol 1994, 31:77-87.
  • [86]Postma NS, Mommers EC, Eling WM, Zuidema J: Oxidative stress in malaria; implications for prevention and therapy. Pharm World Sci 1996, 18:121-129.
  • [87]Thumwood CM, Hunt NH, Cowden WB, Clark IA: Antioxidants can prevent cerebral malaria in Plasmodium berghei-infected mice. Br J Exp Pathol 1989, 70:293-303.
  • [88]Reis PA, Comim CM, Hermani F, Silva B, Barichello T, Portella AC, et al.: Cognitive dysfunction is sustained after rescue therapy in experimental cerebral malaria, and is reduced by additive antioxidant therapy. PLoS Pathog 2010, 6:e1000963.
  • [89]Sanni LA, Fu S, Dean RT, Bloomfield G, Stocker R, Chaudhri G, et al.: Are reactive oxygen species involved in the pathogenesis of murine cerebral malaria? J Infect Dis 1999, 179:217-222.
  • [90]Potter SM, Mitchell AJ, Cowden WB, Sanni LA, Dinauer M, de Haan JB, et al.: Phagocyte-derived reactive oxygen species do not influence the progression of murine blood-stage malaria infections. Infect Immun 2005, 73:4941-4947.
  • [91]Linares M, Marín-García P, Martínez-Chacón G, Pérez-Benavente S, Puyet A, Diez A, Bautista JM: Glutathione peroxidase contributes with heme oxygenase-1 to redox balance in mouse brain during the course of cerebral malaria. Biochim Biophys Acta 1832, 2013:2009-2018.
  • [92]Taoufiq Z, Pino P, Dugas N, Conti M, Tefit M, Mazier D, Vouldoukis I: Transient supplementation of superoxide dismutase protects endothelial cells against Plasmodium falciparum-induced oxidative stress. Mol Biochem Parasitol 2006, 150:166-173.
  • [93]Tripathi AK, Sullivan DJ, Stins MF: Plasmodium falciparum-infected erythrocytes increase intercellular adhesion molecule 1 expression on brain endothelium through NF-kappaB. Infect Immun 2006, 74:3262-3270.
  • [94]Narsaria N, Mohanty C, Das BK, Mishra SP, Prasad R: Oxidative stress in children with severe malaria. J Trop Pediatr 2012, 58:147-150.
  • [95]Abbott NJ, Friedman A: Overview and introduction: the blood–brain barrier in health and disease. Epilepsia 2012, 53(Suppl 6):1-6.
  • [96]Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO: Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS 2012, 9:23. BioMed Central Full Text
  • [97]Cucullo L, Aumayr B, Rapp E, Janigro D: Drug delivery and in vitro models of the blood–brain barrier. Curr Opin Drug Discov Devel 2005, 8:89-99.
  • [98]Renia L, Howland SW, Claser C, Gruner AC, Suwanarusk R, Hui Teo T, Russell B, Ng LF: Cerebral malaria – Mysteries at the blood-brain barrier. Virulence 2012, 3:193-201.
  • [99]Treeratanapiboon L, Psathaki K, Wegener J, Looareesuwan S, Galla HJ, Udomsangpetch R: In vitro study of malaria parasite induced disruption of blood–brain barrier. Biochem Biophys Res Commun 2005, 335:810-818.
  • [100]Susomboon P, Maneerat Y, Dekumyoy P, Kalambaheti T, Iwagami M, Komaki-Yasuda K, et al.: Down-regulation of tight junction mRNAs in human endothelial cells co-cultured with Plasmodium falciparum-infected erythrocytes. Parasitol Int 2006, 55:107-112.
  • [101]Wassmer SC, Combes V, Candal FJ, Juhan-Vague I, Grau GE: Platelets potentiate brain endothelial alterations induced by Plasmodium falciparum. Infect Immun 2006, 74:645-653.
  • [102]Tripathi AK, Sullivan DJ, Stins MF: Plasmodium falciparum-infected erythrocytes decrease the integrity of human blood–brain barrier endothelial cell monolayers. J Infect Dis 2007, 195:942-950.
  • [103]Gillrie MR, Krishnegowda G, Lee K, Buret AG, Robbins SM, Looareesuwan S, et al.: Src-family kinase dependent disruption of endothelial barrier function by Plasmodium falciparum merozoite proteins. Blood 2007, 110:3426-3435.
  • [104]Tripathi AK, Sha W, Shulaev V, Stins MF, Sullivan DJ Jr: Plasmodium falciparum-infected erythrocytes induce NF-kappaB regulated inflammatory pathways in human cerebral endothelium. Blood 2009, 114:4243-4252.
  • [105]Zougbédé S, Miller F, Ravassard P, Rebollo A, Cicéron L, Couraud PO, et al.: Metabolic acidosis induced by Plasmodium falciparum intraerythrocytic stages alters blood–brain barrier integrity. J Cereb Blood Flow Metab 2011, 31:514-526.
  • [106]Wassmer SC, Moxon CA, Taylor T, Grau GE, Molyneux ME, Craig AG: Vascular endothelial cells cultured from patients with cerebral or uncomplicated malaria exhibit differential reactivity to TNF. Cell Microbiol 2011, 13:198-209.
  • [107]Claessens A, Rowe JA: Selection of Plasmodium falciparum parasites for cytoadhesion to human brain endothelial cells. J Vis Exp 2012, 59:e3122.
  • [108]El-Assaad F, Wheway J, Mitchell AJ, Lou J, Hunt NH, Combes V, Grau GE: Cytoadherence of Plasmodium berghei-infected red blood cells to murine brain and lung microvascular endothelial cells in vitro. Infect Immun 2013, 81:3984-3991.
  • [109]Migasena P, Maegraith BG: The movement of radioactive albumin (I131 R.H.S.A.) from blood into C.S.F. and vice versa by dilution method in normal and Plasmodium knowlesi infected Macaca mulatta. Med J Malaya 1968, 22:250.
  • [110]Migasena P, Maegraith BG: Factor affecting on the movement of protein across the blood: brain: C.S.F. barriers in Plasmodium knowlesi infected Macaca mulatta. Med J Malaya 1968, 22:251.
  • [111]Migasena P, Maegraith BG: The movement of fluorescent isothiocyanate (F.I.T.C.) labelled human albumin from blood into brain tissue examined by fluorescent technique in normal and Plasmodium knowlesi infected Macaca mulatta. Med J Malaya 1968, 22:251.
  • [112]Fujioka H, Millet P, Maeno Y, Nakazawa S, Ito Y, Howard RJ, et al.: A nonhuman primate model for human cerebral malaria: rhesus monkeys experimentally infected with Plasmodium fragile. Exp Parasitol 1994, 78:371-376.
  • [113]Moreno A, Cabrera-Mora M, Garcia A, Orkin J, Strobert E, Barnwell JW, et al.: Plasmodium coatneyi in rhesus macaques replicates the multisystemic dysfunction of severe malaria in humans. Infect Immun 2013, 81:1889-1904.
  • [114]Tongren JE, Yang C, Collins WE, Sullivan JS, Lal AA, Xiao L: Expression of proinflammatory cytokines in four regions of the brain in Macaque mulatta (rhesus) monkeys infected with Plasmodium coatneyi. Am J Trop Med Hyg 2000, 62:530-534.
  • [115]Thumwood CM, Hunt NH, Clark IA, Cowden WB: Breakdown of the blood–brain barrier in murine cerebral malaria. Parasitology 1988, 96:579-589.
  • [116]Polder T, Jerusalem C, Eling W: Topographical distribution of the cerebral lesions in mice infected with Plasmodium berghei. Tropenmed Parasitol 1983, 34:235-243.
  • [117]Polder TW, Eling WM, Kubat K, Jerusalem CR: Histochemistry of cerebral lesions in mice infected with Plasmodium berghei. Trop Med Parasitol 1988, 39:277-283.
  • [118]Polder TW, Eling WM, Curfs JH, Jerusalem CR, Wijers-Rouw M: Ultrastructural changes in the blood–brain barrier of mice infected with Plasmodium berghei. Acta Leiden 1992, 60:31-46.
  • [119]Neill AL, Hunt NH: Pathology of fatal and resolving Plasmodium berghei cerebral malaria in mice. Parasitology 1992, 105:165-175.
  • [120]Penet MF, Viola A, Confort-Gouny S, Le Fur Y, Duhamel G, Kober F, et al.: Imaging experimental cerebral malaria in vivo: significant role of ischemic brain oedema. J Neurosci 2005, 25:7352-7358.
  • [121]Schmidt KE, Schumak B, Specht S, Dubben B, Limmer A, Hoerauf A: Induction of pro-inflammatory mediators in Plasmodium berghei infected BALB/c mice breaks blood–brain-barrier and leads to cerebral malaria in an IL-12 dependent manner. Microbes Infect 2011, 13:828-836.
  • [122]Lacerda-Queiroz N, Lima OC, Carneiro CM, Vilela MC, Teixeira AL, Teixeira-Carvalho A, et al.: Plasmodium berghei NK65 induces cerebral leukocyte recruitment in vivo: an intravital microscopic study. Acta Trop 2011, 120:31-39.
  • [123]Keswani T, Bhattacharyya A: Splenocyte apoptosis in Plasmodium berghei ANKA infection: possible role of TNF-α and TGF-β. Parasite Immunol 2013, 35:73-90.
  • [124]Nacer A, Movila A, Baer K, Mikolajczak SA, Kappe SH, Frevert U: Neuroimmunological blood brain barrier opening in experimental cerebral malaria. PLoS Pathog 2012, 8:e1002982.
  • [125]Owens T, Bechmann I, Engelhardt B: Perivascular spaces and the two steps to neuroinflammation. J Neuropathol Exp Neurol 2008, 67:1113-1121.
  • [126]Warrell DA, Looareesuwan S, Phillips RE, White NJ, Warrell MJ, Chapel HM, et al.: Function of the blood-cerebrospinal fluid barrier in human cerebral malaria: rejection of the permeability hypothesis. Am J Trop Med Hyg 1986, 35:882-889.
  • [127]Brown HC, Chau TT, Mai NT, Day NP, Sinh DX, White NJ, et al.: Blood–brain barrier function in cerebral malaria and CNS infections in Vietnam. Neurology 2000, 55:104-111.
  • [128]Badibanga B, Dayal R, Depierreux M, Pidival G, Lambert PH: Principle immunological factors and the blood–brain barrier in cerebral malaria in children in endemic countries (Zaïre). Ann Soc Belg Med Trop 1986, 66:23-37.
  • [129]Brown H, Rogerson S, Taylor T, Tembo M, Mwenechanya J, Molyneux M, et al.: Blood–brain barrier function in cerebral malaria in Malawian children. Am J Trop Med Hyg 2001, 64:207-213.
  • [130]Mturi N, Keir G, Maclennan CA, Ross A, Willis AC, Elford BC, et al.: Cerebrospinal Fluid Studies in Kenyan Children with Severe Falciparum Malaria. Open Trop Med J 2008, 1:56-62.
  • [131]Dorovini-Zis K, Schmidt K, Huynh H, Fu W, Whitten RO, Milner D, et al.: The neuropathology of fatal cerebral malaria in Malawian children. Am J Pathol 2011, 178:2146-2158.
  • [132]Walker O, Salako LA, Sowunmi A, Thomas JO, Sodeine O, Bondi FS: Prognostic risk factors and post mortem findings in cerebral malaria in children. Trans R Soc Trop Med Hyg 1992, 86:491-493.
  • [133]Pongponratn E, Turner GD, Day NP, Phu NH, Simpson JA, Stepniewska K, et al.: An ultrastructural study of the brain in fatal Plasmodium falciparum malaria. Am J Trop Med Hyg 2003, 69:345-359.
  • [134]Medana IM, Day NP, Sachanonta N, Mai NT, Dondorp AM, Pongponratn E, et al.: Coma in fatal adult human malaria is not caused by cerebral oedema. Malar J 2011, 10:267. BioMed Central Full Text
  • [135]Brown H, Hien TT, Day N, Mai NT, Chuong LV, Chau TT, et al.: Evidence of blood–brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol 1999, 25:331-340.
  • [136]Newton CR, Peshu N, Kendall B, Kirkham FJ, Sowunmi A, Waruiru C, et al.: Brain swelling and ischaemia in Kenyans with cerebral malaria. Arch Dis Child 1994, 70:281-287.
  • [137]Cordoliani YS, Sarrazin JL, Felten D, Caumes E, Leveque C, Fisch A: MR of cerebral malaria. AJNR Am J Neuroradiol 1998, 19:871-874.
  • [138]Ngoungou EB, Dulac O, Poudiougou B, Druet-Cabanac M, Dicko A, Mamadou Traore A, et al.: Epilepsy as a consequence of cerebral malaria in area in which malaria is endemic in Mali, West Africa. Epilepsia 2006, 47:873-879.
  • [139]Lacout A, Guidoux C, Carlier RY: Posterior reversible encephalopathy syndrome in neuro-malaria. Indian J Radiol Imaging 2010, 20:198-201.
  • [140]Potchen MJ, Birbeck GL, Demarco JK, Kampondeni SD, Beare N, Molyneux ME, Taylor TE: Neuroimaging findings in children with retinopathy-confirmed cerebral malaria. Eur J Radiol 2010, 74:262-268.
  • [141]Rasalkar DD, Paunipagar BK, Sanghvi D, Sonawane BD, Loniker P: Magnetic resonance imaging in cerebral malaria: a report of four cases. Br J Radiol 2011, 84:380-385.
  • [142]Potchen MJ, Kampondeni SD, Seydel KB, Birbeck GL, Hammond CA, Bradley WG, et al.: Acute brain MRI findings in 120 Malawian children with cerebral malaria: new insights into an ancient disease. AJNR Am J Neuroradiol 2012, 33:1740-1746.
  • [143]Kampondeni SD, Potchen MJ, Beare NA, Seydel KB, Glover SJ, Taylor TE, Birbeck GL: MRI findings in a cohort of brain injured survivors of pediatric cerebral malaria. Am J Trop Med Hyg 2013, 88:542-546.
  • [144]Frevert U, Nacer A, Cabrera M, Movila A, Leberl M: Imaging Plasmodium immunobiology in the liver, brain, and lung. Parasitol Int 2014, 63:171-186.
  • [145]Taylor TE, Fu WJ, Carr RA, Whitten RO, Mueller JS, Fosiko NG, et al.: Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat Med 2004, 10:143-145.
  • [146]Riley EM, Couper KN, Helmby H, Hafalla JC, de Souza JB, Langhorne J, et al.: Neuropathogenesis of human and murine malaria. Trends Parasitol 2010, 26:277-278.
  • [147]Cabrales P, Zanini GM, Meays D, Frangos JA, Carvalho LJ: Murine cerebral malaria is associated with a vasospasm-like microcirculatory dysfunction, and survival upon rescue treatment is markedly increased by nimodipine. Am J Pathol 2010, 176:1306-1315.
  • [148]Hawkes M, Elphinstone RE, Conroy AL, Kain KC: Contrasting pediatric and adult cerebral malaria: the role of the endothelial barrier. Virulence 2013, 4:543-555.
  • [149]Saunders NR, Habgood MD, Dziegielewska KM: Barrier mechanisms in the brain, II. Immature brain. Clin Exp Pharmacol Physiol 1999, 26:85-91.
  • [150]Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR: Barriers in the developing brain and Neurotoxicology. Neurotoxicology 2012, 33:586-604.
  • [151]Szklarczyk A, Stins M, Milward EA, Ryu H, Fitzsimmons C, Sullivan D, et al.: Glial activation and matrix metalloproteinase release in cerebral malaria. J Neurovirol 2007, 13:2-10.
  • [152]Prato M, Giribaldi G: Matrix metalloproteinase-9 and haemozoin: wedding rings for human host and Plasmodium falciparum parasite in complicated malaria. J Trop Med 2011, 2011:628435.
  • [153]Geurts N, Opdenakker G, Van den Steen PE: Matrix metalloproteinases as therapeutic targets in protozoan parasitic infections. Pharmacol Ther 2012, 133:257-279.
  • [154]Piña-Vázquez C, Reyes-López M, Ortíz-Estrada G, de la Garza M, Serrano-Luna J: Host-parasite interaction: parasite-derived and -induced proteases that degrade human extracellular matrix. J Parasitol Res 2012, 2012:748206.
  • [155]Nagase H, Woessner JF Jr: Matrix metalloproteinases. J Biol Chem 1999, 274:21491-21494.
  • [156]Rosenberg GA: Matrix metalloproteinases in neuroinflammation. Glia 2002, 39:279-291.
  • [157]Woessner JF Jr: MMPs and TIMPs–an historical perspective. Mol Biotechnol 2002, 22:33-49.
  • [158]Rosenberg GA, Yang Y: Vasogenic oedema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus 2007, 22:E4.
  • [159]Klein T, Bischoff R: Physiology and pathophysiology of matrix metalloproteases. Amino Acids 2011, 41:271-290.
  • [160]Peng WJ, Yan JW, Wan YN, Wang BX, Tao JH, Yang GJ, et al.: Matrix metalloproteinases: a review of their structure and role in systemic sclerosis. J Clin Immunol 2012, 32:1409-1414.
  • [161]Mannello F, Medda V: Nuclear localization of matrix metalloproteinases. Prog Histochem Cytochem 2012, 47:27-58.
  • [162]Marco M, Fortin C, Fulop T: Membrane-type matrix metalloproteinases: key mediators of leukocyte function. J Leukoc Biol 2013, 94:237-246.
  • [163]Siefert SA, Sarkar R: Matrix metalloproteinases in vascular physiology and disease. Vascular 2012, 20:210-216.
  • [164]Van Wart HE, Birkedal-Hansen H: The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 1990, 87:5578-5582.
  • [165]Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G: Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 2002, 37:375-536.
  • [166]Nagase H: Cell surface activation of progelatinase A (proMMP-2) and cell migration. Cell Res 1998, 8:179-186.
  • [167]Nagase H, Visse R, Murphy G: Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 2006, 69:562-573.
  • [168]Zhao H, Bernardo MM, Osenkowski P, Sohail A, Pei D, Nagase H, et al.: Differential inhibition of membrane type 3 (MT3)-matrix metalloproteinase (MMP) and MT1-MMP by tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-3 rgulates pro-MMP-2 activation. J Biol Chem 2004, 279:8592-8601.
  • [169]Cauwe B, Van den Steen PE, Opdenakker G: The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol 2007, 42:113-185.
  • [170]Van Lint P, Libert C: Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 2007, 82:1375-1381.
  • [171]Butler GS, Overall CM: Updated biological roles for matrix metalloproteinases and new “intracellular” substrates revealed by degradomics. Biochemistry 2009, 48:10830-10845.
  • [172]Van den Steen PE, Van Aelst I, Starckx S, Maskos K, Opdenakker G, Pagenstecher A: Matrix metalloproteinases, tissue inhibitors of MMPs and TACE in experimental cerebral malaria. Lab Invest 2006, 86:873-888.
  • [173]Deroost K, Tyberghein A, Lays N, Noppen S, Schwarzer E, Vanstreels E, et al.: Hemozoin Induces Lung Inflammation and Correlates with Malaria-Associated Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2013, 48:589-600.
  • [174]Piguet PF, Da Laperrousaz C, Vesin C, Tacchini-Cottier F, Senaldi G, Grau GE: Delayed mortality and attenuated thrombocytopenia associated with severe malaria in urokinase- and urokinase receptor-deficient mice. Infect Immun 2000, 68:3822-3829.
  • [175]Egan TJ: Recent advances in understanding the mechanism of hemozoin (malaria pigment) formation. J Inorg Biochem 2008, 102:1288-1299.
  • [176]Sullivan AD, Ittarat I, Meshnick SR: Patterns of haemozoin accumulation in tissue. Parasitology 1996, 112(Pt 3):285-294.
  • [177]Carney CK, Schrimpe AC, Halfpenny K, Harry RS, Miller CM, Broncel M, et al.: The basis of the immunomodulatory activity of malaria pigment (hemozoin). J Biol Inorg Chem 2006, 11:917-929.
  • [178]Schrimpe AC, Wright DW: Comparative analysis of gene expression changes mediated by individual constituents of hemozoin. Chem Res Toxicol 2009, 22:433-445.
  • [179]Schrimpe AC, Wright DW: Differential gene expression mediated by 15-hydroxyeicosatetraenoic acid in LPS-stimulated RAW 264.7 cells. Malar J 2009, 8:195. BioMed Central Full Text
  • [180]Prato M, Giribaldi G, Polimeni M, Gallo V, Arese P: Phagocytosis of hemozoin enhances matrix metalloproteinase-9 activity and TNF-alpha production in human monocytes: role of matrix metalloproteinases in the pathogenesis of falciparum malaria. J Immunol 2005, 175:6436-6442.
  • [181]Prato M, Gallo V, Giribaldi G, Arese P: Phagocytosis of haemozoin (malarial pigment) enhances metalloproteinase-9 activity in human adherent monocytes: role of IL-1beta and 15-HETE. Malar J 2008, 7:157. BioMed Central Full Text
  • [182]Prato M, Gallo V, Giribaldi G, Aldieri E, Arese P: Role of the NF-κB transcription pathway in the haemozoin- and 15-HETE-mediated activation of matrix metalloproteinase-9 in human adherent monocytes. Cell Microbiol 2010, 12:1780-1791.
  • [183]Giribaldi G, Prato M, Ulliers D, Gallo V, Schwarzer E, Akide-Ndunge OB, et al.: Involvement of inflammatory chemokines in survival of human monocytes fed with malarial pigment. Infect Immun 2010, 78:4912-4921.
  • [184]Giribaldi G, Valente E, Khadjavi A, Polimeni M, Prato M: Macrophage inflammatory protein-1alpha mediates matrix metalloproteinase-9 enhancement in human adherent monocytes fed with malarial pigment. Asian Pac J Trop Med 2011, 4:925-930.
  • [185]Khadjavi A, Valente E, Giribaldi G, Prato M: Involvement of p38 MAPK in natural haemozoin- and 15-HETE-dependent MMP-9 enhancement in human adherent monocytes. Cell Biochem Funct 2014, 32:5-15.
  • [186]Polimeni M, Valente E, Ulliers D, Opdenakker G, Van den Steen PE, Giribaldi G, Prato M: Natural Haemozoin Induces Expression and Release of Human Monocyte Tissue Inhibitor of Metalloproteinase-1. PLoS ONE 2013, 8:e71468.
  • [187]Dell’Agli M, Galli GV, Bulgari M, Basilico N, Romeo S, Bhattacharya D, et al.: Ellagitannins of the fruit rind of pomegranate (Punica granatum) antagonize in vitro the host inflammatory response mechanisms involved in the onset of malaria. Malar J 2010, 9:208. BioMed Central Full Text
  • [188]Prato M: Malarial pigment does not induce MMP-2 and TIMP-2 protein release by human monocytes. Asian Pac J Trop Med 2011, 4:756.
  • [189]Prato M, Gallo V, Arese P: Higher production of tumor necrosis factor alpha in hemozoin-fed human adherent monocytes is dependent on lipidic component of malarial pigment: new evidences on cytokine regulation in P. falciparum malaria. Asian Pac J Trop Med 2010, 3:85-89.
  • [190]Polimeni M, Valente E, Aldieri E, Khadjavi A, Giribaldi G, Prato M: Role of 15-hydroxyeicosatetraenoic acid in hemozoin-induced lysozyme release from human adherent monocytes. Biofactors 2013, 39:304-314.
  • [191]Polimeni M, Valente E, Aldieri E, Khadjavi A, Giribaldi G, Prato M: Haemozoin induces early cytokine-mediated lysozyme release from human monocytes through p38 MAPK- and NF-kappaB-dependent mechanisms. PLoS One 2012, 7:e39497.
  • [192]Prato M, Giribaldi G, Arese P: Hemozoin triggers tumor necrosis factor alpha-mediated release of lysozyme by human adherent monocytes: new evidences on leukocyte degranulation in P. falciparum malaria. Asian Pac J Trop Med 2009, 2(3):35-40.
  • [193]Geurts N, Martens E, Van Aelst I, Proost P, Ulliers D, Opdenakker G, Van den Steen PE: Beta-hematin interaction with the hemopexin domain of gelatinase B/MMP-9 provokes autocatalytic processing of the propeptide, thereby priming activation by MMP-3. Biochemistry 2008, 47:2689-2699.
  • [194]Prato M, D’Alessandro S, Van den Steen PE, Opdenakker G, Arese P, Taramelli D, Basilico N: Natural haemozoin modulates matrix metalloproteinases and induces morphological changes in human microvascular endothelium. Cell Microbiol 2011, 13:1275-1285.
  • [195]D’Alessandro S, Basilico N, Prato M: Effects of Plasmodium falciparum-infected erythrocytes on matrix metalloproteinase-9 regulation in human microvascular endothelial cells. Asian Pac J Trop Med 2013, 6:195-199.
  • [196]Fauser S, Deininger MH, Kremsner PG, Magdolen V, Luther T, Meyermann R, et al.: Lesion associated expression of urokinase-type plasminogen activator receptor (uPAR, CD87) in human cerebral malaria. J Neuroimmunol 2000, 111:234-240.
  • [197]Deininger MH, Winkler S, Kremsner PG, Meyermann R, Schluesener HJ: Angiogenic proteins in brains of patients who died with cerebral malaria. J Neuroimmunol 2003, 142:101-111.
  • [198]Deininger MH, Fimmen B, Kremsner PG, Meyermann R, Schluesener HJ: Accumulation of endostatin/collagenXVIII in brains of patients who died with cerebral malaria. J Neuroimmunol 2002, 131:216-221.
  • [199]Griffiths MJ, Shafi MJ, Popper SJ, Hemingway CA, Kortok MM, Wathen A, et al.: Genomewide analysis of the host response to malaria in Kenyan children. J Infect Dis 2005, 191:1599-1611.
  • [200]Dietmann A, Helbok R, Lackner P, Issifou S, Lell B, Matsiegui PB, et al.: Matrix metalloproteinases and their tissue inhibitors (TIMPs) in Plasmodium falciparum malaria: serum levels of TIMP-1 are associated with disease severity. J Infect Dis 2008, 197:1614-1620.
  • [201]Noone C, Parkinson M, Dowling DJ, Aldridge A, Kirwan P, Molloy SF, et al.: Plasma cytokines, chemokines and cellular immune responses in pre-school Nigerian children infected with Plasmodium falciparum. Malar J 2013, 12:5. BioMed Central Full Text
  • [202]Jung K: Measurement of matrix metalloproteinases and their tissue inhibitors in serum produces doubtful results. J Infect Dis 2008, 198:1722-1723.
  • [203]Giebel SJ, Menicucci G, McGuire PG, Das A: Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Lab Invest 2005, 85:597-607.
  • [204]Gurney KJ, Estrada EY, Rosenberg GA: Blood–brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis 2006, 23:87-96.
  • [205]Gorodeski GI: Estrogen decrease in tight junctional resistance involves matrix-metalloproteinase-7-mediated remodeling of occludin. Endocrinology 2007, 148:218-231.
  • [206]Chiu PS, Lai SC: Matrix metalloproteinase-9 leads to claudin-5 degradation via the NF-κB pathway in BALB/c mice with eosinophilic meningoencephalitis caused by Angiostrongylus cantonensis. PLoS One 2013, 8:e53370.
  • [207]Liu J, Jin X, Liu KJ, Liu W: Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood–brain barrier damage in early ischemic stroke stage. J Neurosci 2012, 32:3044-3057.
  • [208]Feng S, Cen J, Huang Y, Shen H, Yao L, Wang Y, Chen Z: Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeabilità of blood-brain barrier by disrupting tight junction proteins. PLoS One 2011, 6:e20599. Erratum in: PLoS One 2011; 6(8)
  • [209]Qiu LB, Zhou Y, Wang Q, Yang LL, Liu HQ, Xu SL, Qi YH, Ding GR, Guo GZ: Synthetic gelatinases inhibitor attenuates electromagnetic pulse-induced blood–brain barrier disruption by inhibiting gelatinases-mediated ZO-1 degradation in rats. Toxicology 2011, 285:31-38.
  • [210]Lijnen HR: Elements of the fibrinolytic system. Ann N Y Acad Sci 2001, 936:226-236.
  • [211]Lijnen HR: Matrix metalloproteinases and cellular fibrinolytic activity. Biochemistry 2002, 67:92-98.
  • [212]Santos-Martínez MJ, Medina C, Jurasz P, Radomski MW: Role of metalloproteinases in platelet function. Thromb Res 2008, 121:535-542.
  • [213]Lesiak A, Narbutt J, Sysa-Jedrzejowska A, Lukamowicz J, McCauliffe DP, Wózniacka A: Effect of chloroquine phosphate treatment on serum MMP-9 and TIMP-1 levels in patients with systemic lupus erythematosus. Lupus 2010, 19:683-688.
  • [214]Buommino E, Baroni A, Canozo N, Petrazzuolo M, Nicoletti R, Vozza A, Tufano MA: Artemisinin reduces human melanoma cell migration by down-regulating alpha V beta 3 integrin and reducing metalloproteinase 2 production. Invest New Drugs 2009, 27:412-418.
  • [215]Wartenberg M, Wolf S, Budde P, Grünheck F, Acker H, Hescheler J, Wartenberg G, Sauer H: The antimalaria agent artemisinin exerts antiangiogenic effects in mouse embryonic stem cell-derived embryoid bodies. Lab Invest 2003, 83:1647-1655.
  • [216]Hwang YP, Yun HJ, Kim HG, Han EH, Lee GW, Jeong HG: Suppression of PMA-induced tumor cell invasion by dihydroartemisinin via inhibition of PKCalpha/Raf/MAPKs and NF-kappaB/AP-1-dependent mechanisms. Biochem Pharmacol 2010, 79:1714-1726.
  • [217]Wang SJ, Sun B, Cheng ZX, Zhou HX, Gao Y, Kong R, Chen H, Jiang HC, Pan SH, Xue DB, Bai XW: Dihydroartemisinin inhibits angiogenesis in pancreatic cancer by targeting the NF-κB pathway. Cancer Chemother Pharmacol 2011, 68:1421-1430.
  • [218]Rasheed SA, Efferth T, Asangani IA, Allgayer H: First evidence that the antimalarial drug artesunate inhibits invasion and in vivo metastasis in lung cancer by targeting essential extracellular proteases. Int J Cancer 2010, 127:1475-1485.
  • [219]Peterson JT: The importance of estimating the therapeutic index in the development of matrix metalloproteinase inhibitors. Cardiovasc Res 2006, 69:677-687.
  • [220]Konstantinopoulos PA, Karamouzis MV, Papatsoris AG, Papavassiliou AG: Matrix metalloproteinase inhibitors as anticancer agents. Int J Biochem Cell Biol 2008, 40:1156-1168.
  • [221]Dormán G, Cseh S, Hajdú I, Barna L, Kónya D, Kupai K, et al.: Matrix metalloproteinase inhibitors: a critical appraisal of design principles and proposed therapeutic utility. Drugs 2010, 70:949-964.
  • [222]Murphy G, Nagase H: Progress in matrix metalloproteinase research. Mol Aspects Med 2008, 29:290-308.
  • [223]Hu J, Van den Steen PE, Sang QX, Opdenakker G: Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 2007, 6:480-498.
  • [224]Pirard B: Insight into the structural determinants for selective inhibition of matrix metalloproteinases. Drug Discov Today 2007, 12:640-646.
  • [225]Devel L, Czarny B, Beau F, Georgiadis D, Stura E, Dive V: Third generation of matrix metalloprotease inhibitors: gain in selectivity by targeting the depth of the S1′ cavity. Biochimie 2010, 92:1501-1508.
  • [226]Fingleton B: MMPs as therapeutic targets–still a viable option? Semin Cell Dev Biol 2008, 19:61-68.
  • [227]Murata CE, Goldberg DE: Plasmodium falciparum falcilysin: a metalloprotease with dual specificity. J Biol Chem 2003, 278:38022-38028.
  文献评价指标  
  下载次数:10次 浏览次数:13次