期刊论文详细信息
Journal of Neuroinflammation
The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: further development of a rodent model of autism spectrum disorders
Derrick F MacFabe2  Suya Liu1  Fred Possmayer3  Lisa Tichenoff2  Jennifer R Mepham2  Melissa M Meeking2  Raymond H Thomas2 
[1] Biological Mass Spectrometry Laboratory, Department of Biochemistry, University of Western Ontario, London, ON, Canada;The Kilee Patchell-Evans Autism Research Group, Department of Psychology, University of Western Ontario, London, ON, N6A 5C2, Canada;Department of Obstetrics/Gynecology and Biochemistry, University of Western Ontario, London Health Sciences Center, London, ON, Canada
关键词: Oxidative stress;    Docosahexaenoic acid;    Plasmalogens;    Gap junction;    Membrane fluidity;    Locomotor activity;   
Others  :  1212404
DOI  :  10.1186/1742-2094-9-153
 received in 2012-02-08, accepted in 2012-05-29,  发布年份 2012
PDF
【 摘 要 】

Gastrointestinal symptoms and altered blood phospholipid profiles have been reported in patients with autism spectrum disorders (ASD). Most of the phospholipid analyses have been conducted on the fatty acid composition of isolated phospholipid classes following hydrolysis. A paucity of information exists on how the intact phospholipid molecular species are altered in ASD. We applied ESI/MS to determine how brain and blood intact phospholipid species were altered during the induction of ASD-like behaviors in rats following intraventricular infusions with the enteric bacterial metabolite propionic acid. Animals were infused daily for 8 days, locomotor activity assessed, and animals killed during the induced behaviors. Propionic acid infusions increased locomotor activity. Lipid analysis revealed treatment altered 21 brain and 30 blood phospholipid molecular species. Notable alterations were observed in the composition of brain SM, diacyl mono and polyunsaturated PC, PI, PS, PE, and plasmalogen PC and PE molecular species. These alterations suggest that the propionic acid rat model is a useful tool to study aberrations in lipid metabolism known to affect membrane fluidity, peroxisomal function, gap junction coupling capacity, signaling, and neuroinflammation, all of which may be associated with the pathogenesis of ASD.

【 授权许可】

   
2012 Thomas et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150614093145566.pdf 540KB PDF download
Figure 3. 48KB Image download
Figure 2. 32KB Image download
Figure 1. 70KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Amminger GP, Berger GE, Schafer MR, Klier C, Friedrich MH, Feucht M: Omega-3 fatty acids supplementation in children with autism: a double-blind randomized, placebo-controlled pilot study. Biol Psychiatry 2007, 61:551-553.
  • [2]Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen ML, Bolte E, McTeague M, Sandler R, Wexler H, Marlowe EM, Collins MD, Lawson PA, Summanen P, Baysallar M, Tomzynski TJ, Read E, Johnson E, Rolfe R, Nasir P, Shah H, Haake DA, Manning P, Kaul A: Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 2002, 35:S6-S16.
  • [3]Hu VW, Frank BC, Heine S, Lee NH, Quackenbush J: Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes. BMC Genomics 2006, 7:118. BioMed Central Full Text
  • [4]Sarachana T, Zhou R, Chen G, Manji HK, Hu VW: Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med 2010, 2:23. BioMed Central Full Text
  • [5]Wiest MM, German JB, Harvey DJ, Watkins SM, Hertz-Picciotto I: Plasma fatty acid profiles in autism: a case–control study. Prostaglandins Leukot Essent Fatty Acids 2009, 80:221-227.
  • [6]Zerrate MC, Pletnikov M, Connors SL, Vargas DL, Seidler FJ, Zimmerman AW, Slotkin TA, Pardo CA: Neuroinflammation and behavioral abnormalities after neonatal terbutaline treatment in rats: implications for autism. J Pharmacol Exp Ther 2007, 322:16-22.
  • [7]MacFabe DF, Cain DP, Rodriguez-Capote K, Franklin AE, Hoffman JE, Boon F, Taylor AR, Kavaliers M, Ossenkopp KP: Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav Brain Res 2007, 176:149-169.
  • [8]MacFabe DF, Rodriguez-Capote K, Hoffman JE, Franklin AE, Mohammad-Asef Y, Taylor A, Boon F, Cain DP, Kavaliers M, Possmayer F, Ossenkopp KP: A novel rodent model of autism: Intraventricular infusions of propionic acid increase locomotor activity and induce neuroinflammation and oxidative stress in discrete regions of adult rat brain. Am J Biochem & Biotech. 2008, 4:146-166.
  • [9]MacFabe DF, Cain NE, Boon F, Ossenkopp KP, Cain DP: Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: Relevance to autism spectrum disorder. Behav Brain Res 2010, 217:47-54.
  • [10]Shultz SR, MacFabe DF, Martin S, Jackson J, Taylor R, Boon F, Ossenkopp KP, Cain DP: Intracerebroventricular injections of the enteric bacterial metabolic product propionic acid impair cognition and sensorimotor ability in the Long-Evans rat: further development of a rodent model of autism. Behav Brain Res 2009, 200:33-41.
  • [11]Shultz SR, MacFabe DF, Ossenkopp KP, Scratch S, Whelan J, Taylor R, Cain DP: Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs social behavior in the rat: implications for an animal model of autism. Neuropharmacology 2008, 54:901-911.
  • [12]Thomas RH, Foley KA, Mepham JR, Tichenoff LJ, Possmayer F, MacFabe DF: Altered brain phospholipid and acylcarnitine profiles in propionic acid infused rodents: further development of a potential model of autism spectrum disorders. J Neurochem 2010, 113:515-529.
  • [13]Mortensen PB, Clausen MR: Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand J Gastroenterol Suppl 1996, 216:132-148.
  • [14]Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD, Youn E, Summanen PH, Granpeesheh D, Dixon D, Liu M, Molitoris DR, Green JA: Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 2010, 16:444-453.
  • [15]Brock M, Buckel W: On the mechanism of action of the antifungal agent propionate. Eur J Biochem 2004, 271:3227-3241.
  • [16]Wajner M, Latini A, Wyse AT, Dutra-Filho CS: The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 2004, 27:427-448.
  • [17]Conn AR, Fell DI, Steele RD: Characterization of alpha-keto acid transport across blood–brain barrier in rats. Am J Physiol 1983, 245:E253-E260.
  • [18]Karuri AR, Dobrowsky E, Tannock IF: Selective cellular acidification and toxicity of weak organic acids in an acidic microenvironment. Br J Cancer 1993, 68:1080-1087.
  • [19]Rorig B, Klausa G, Sutor B: Intracellular acidification reduced gap junction coupling between immature rat neocortical pyramidal neurones. J Physiol 1996, 490:31-49.
  • [20]DeCastro M, Nankova BB, Shah P, Patel P, Mally PV, Mishra R, La Gamma EF: Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway. Brain Res Mol Brain Res 2005, 142:28-38.
  • [21]Maurer MH, Canis M, Kuschinsky W, Duelli R: Correlation between local monocarboxylate transporter 1 (MCT1) and glucose transporter 1 (GLUT1) densities in the adult rat brain. Neurosci Lett 2004, 355:105-108.
  • [22]Nakao S, Moriya Y, Furuyama S, Niederman R, Sugiya H: Propionic acid stimulates superoxide generation in human neutrophils. Cell Biol Int 1998, 22:331-337.
  • [23]Hara H, Haga S, Aoyama Y, Kiriyama S: Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine. J Nutr 1999, 129:942-948.
  • [24]Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, Brezillon S, Dupriez V, Vassart G, Van Damme J, Parmentier M, Detheux M: Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 2003, 278:25481-25489.
  • [25]Parab S, Nankova BB, La Gamma EF: Differential regulation of the tyrosine hydroxylase and enkephalin neuropeptide transmitter genes in rat PC12 cells by short chain fatty acids: concentration-dependent effects on transcription and RNA stability. Brain Res 2007, 1132:42-50.
  • [26]Frye RE, Rossignol DA: Mitochondrial dysfunction can connect the diverse medical symptoms associated with autism spectrum disorders. Pediatr Res 2011, 69:41R-47R.
  • [27]Pastural E, Ritchie S, Lu Y, Jin W, Kavianpour A, Khine Su-Myat K, Heath D, Wood PL, Fisk M, Goodenowe DB: Novel plasma phospholipid biomarkers of autism: Mitochondrial dysfunction as a putative causative mechanism. Prostaglandins Leukot Essent Fatty Acids 2009, 81:253-264.
  • [28]Tamiji J, Crawford DA: The neurobiology of lipid metabolism in autism spectrum disorders. Neurosignals 2010, 18:98-112.
  • [29]Bell JG, MacKinlay EE, Dick JR, MacDonald DJ, Boyle RM, Glen AC: Essential fatty acids and phospholipase A2 in autistic spectrum disorders. Prostaglandins Leukot. Essent Fatty Acids 2004, 71:201-204.
  • [30]Bell JG, Sargent JR, Tocher DR, Dick JR: Red blood cell fatty acid compositions in a patient with autistic spectrum disorder: a characteristic abnormality in neurodevelopmental disorders? Prostaglandins Leukot. Essent Fatty Acids 2000, 63:21-25.
  • [31]Richardson AJ: Clinical trials of fatty acid treatment in ADHD, dyslexia, dyspraxia and the autistic spectrum. Prostaglandins Leukot Essent Fatty Acids 2004, 70:383-390.
  • [32]Vancassel S, Durand G, Barthelemy C, Lejeune B, Martineau J, Guilloteau D, Andres C, Chalon S: Plasma fatty acid levels in autistic children. Prostaglandins Leukot Essent Fatty Acids 2001, 65:1-7.
  • [33]Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD: Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci U S A 1997, 94:2339-2344.
  • [34]Postle AD, Heeley EL, Wilton DC: A comparison of the molecular species compositions of mammalian lung surfactant phospholipids. Comp Biochem Physiol A Mol Integr Physiol 2001, 129:65-73.
  • [35]Pulfer M, Murphy RC: Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 2003, 22:332-364.
  • [36]Meguid NA, Atta HM, Gouda AS, Khalil RO: Role of polyunsaturated fatty acids in the management of Egyptian children with autism. Clin Biochem 2008, 41:1044-1048.
  • [37]Paxinos G, Watson C: The Rat Brain in Stereotaxic Coordinates. Montreal: Academic Press; 1986.
  • [38]Folch J, Lees M, Sloane Stanley GH: A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957, 226:497-509.
  • [39]Sherma J, Fried B: Handbook of Thin Layer Chromatography. New York, NY: Marcel and Dekker; 2003:pp. ii-991.
  • [40]Deeley JM, Mitchell TW, Wei X, Korth J, Nealon JR, Blanksby SJ, Truscott RJ: Human lens lipids differ markedly from those of commonly used experimental animals. Biochim Biophys Acta 2008, 1781:288-298.
  • [41]Volkmar FR, Lord C, Bailey A, Schultz RT, Klin A: Autism and pervasive developmental disorders. J Child Psychol Psychiatry 2004, 45:135-170.
  • [42]Cannizzaro C, Monastero R, Vacca M, Martire M: [3 H]-DA release evoked by low pH medium and internal H + accumulation in rat hypothalamic synaptosomes: involvement of calcium ions. Neurochem Int 2003, 43:9-17.
  • [43]Remblier C, Pontcharraud R, Tallineau C, Piriou A, Huguet F: Lactic acid-induced increase of extracellular dopamine measured by microdialysis in rat striatum: evidence for glutamatergic and oxidative mechanisms. Brain Res 1999, 837:22-28.
  • [44]Severson CA, Wang W, Pieribone VA, Dohle CI, Richerson GB: Midbrain serotonergic neurons are central pH chemoreceptors. Nat Neurosci 2003, 6:1139-1140.
  • [45]Bronstein JM, Farber DB, Wasterlain CG: Regulation of type-II calmodulin kinase: functional implications. Brain Res Rev 1993, 18:135-147.
  • [46]Nakao S, Fujii A, Niederman R: Alteration of cytoplasmic Ca2+ in resting and stimulated human neutrophils by short-chain carboxylic acids at neutral pH. Infect Immun 1992, 60:5307-5311.
  • [47]Fukuchi M, Nii T, Ishimaru N, Minamino A, Hara D, Takasaki I, Tabuchi A, Tsuda M: Valproic acid induces up- or down-regulation of gene expression responsible for the neuronal excitation and inhibition in rat cortical neurons through its epigenetic actions. Neurosci Res 2009, 65:35-43.
  • [48]Bayir H, Tyurin VA, Tyurina YY, Viner R, Ritov V, Amoscato AA, Zhao Q, Zhang XJ, Janesko-Feldman KL, Alexander H, Basova LV, Clark RS, Kochanek PM, Kagan VE: Selective early cardiolipin peroxidation after traumatic brain injury: an oxidative lipidomics analysis. Ann Neurol 2007, 62:154-169.
  • [49]Little SJ, Lynch MA, Manku M, Nicolaou A: Docosahexaenoic acid-induced changes in phospholipids in cortex of young and aged rats: a lipidomic analysis. Prostaglandins Leukot Essent Fatty Acids 2007, 77:155-162.
  • [50]Hon GM, Hassan MS, van Rensburg SJ, Abel S, van JP, Erasmus RT, Matsha T: Red blood cell membrane fluidity in the etiology of multiple sclerosis. J Membr Biol 2009, 232:25-34.
  • [51]Kakela R, Somerharju P, Tyynela J: Analysis of phospholipid molecular species in brains from patients with infantile and juvenile neuronal-ceroid lipofuscinosis using liquid chromatography-electrospray ionization mass spectrometry. J Neurochem 2003, 84:1051-1065.
  • [52]Bu B, Ashwood P, Harvey D, King IB, Water JV, Jin LW: Fatty acid compositions of red blood cell phospholipids in children with autism. Prostaglandins Leukot Essent Fatty Acids 2006, 74:215-221.
  • [53]Sliwinski S, Croonenberghs J, Christophe A, Deboutte D, Maes M: Polyunsaturated fatty acids: do they have a role in the pathophysiology of autism? Neuro Endocrinol Lett 2006, 27:465-471.
  • [54]Farooqui AA, Ong WY, Horrocks LA: Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem Res 2004, 29:1961-1977.
  • [55]Chauhan A, Chauhan V: Oxidative stress in autism. Pathophysiology. 2006, 13:171-181.
  • [56]Chauhan A, Chauhan V, Brown WT, Cohen I: Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin–the antioxidant proteins. Life Sci 2004, 75:2539-2549.
  • [57]Chauhan V, Chauhan A, Cohen IL, Brown WT, Sheikh A: Alteration in amino-glycerophospholipids levels in the plasma of children with autism: a potential biochemical diagnostic marker. Life Sci 2004, 74:1635-1643.
  • [58]Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA: Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2004, 57:67-81.
  • [59]Farooqui AA, Horrocks LA: Plasmalogens, phospholipase A(2), and docosahexaenoic acid turnover in brain tissue. J Mol Neurosci 2001, 16:263-272.
  • [60]Allen HG, Allen JC, Boyd LC, ston-Mills BP, Fenner GP: Determination of membrane lipid differences in insulin resistant diabetes mellitus type 2 in whites and blacks. Nutrition 2006, 22:1096-1102.
  • [61]Schuchardt JP, Huss M, Stauss-Grabo M, Hahn A: Significance of long-chain polyunsaturated fatty acids (PUFAs) for the development and behaviour of children. Eur J Pediatr 2009, 169:149-164.
  • [62]Gorgas K, Teigler A, Komljenovic D, Just WW: The ether lipid-deficient mouse: tracking down plasmalogen functions. Biochim Biophys Acta 2006, 1763:1511-1526.
  • [63]Dommels YE, Alink GM, Linssen JP, van OB: Effects of n-6 and n-3 polyunsaturated fatty acids on gap junctional intercellular communication during spontaneous differentiation of the human colon adenocarcinoma cell line Caco-2. Nutr Cancer 2002, 42:125-130.
  • [64]Martinez AD, Saez JC: Regulation of astrocyte gap junctions by hypoxia-reoxygenation. Brain Res Brain Res Rev 2000, 32:250-258.
  • [65]Aylsworth CF, Trosko JE, Welsch CW: Influence of lipids on gap-junction-mediated intercellular communication between Chinese hamster cells in vitro. Cancer Res 1986, 46:4527-4533.
  • [66]Champeil-Potokar G, Chaumontet C, Guesnet P, Lavialle M, Denis I: Docosahexaenoic acid (22:6n-3) enrichment of membrane phospholipids increases gap junction coupling capacity in cultured astrocytes. Eur J Neurosci 2006, 24:3084-3090.
  • [67]Rouach N, Avignone E, Meme W, Koulakoff A, Venance L, Blomstrand F, Giaume C: Gap junctions and connexin expression in the normal and pathological central nervous system. Biol Cell 2002, 94:457-475.
  文献评价指标  
  下载次数:3次 浏览次数:9次