期刊论文详细信息
Journal of Clinical Bioinformatics
High-throughput identification of reference genes for research and clinical RT-qPCR analysis of breast cancer samples
Alexander G Tonevitsky2  Udo Schumacher1  Vladimir V Galatenko4  Maxim U Shkurnikov2  Alexey E Lebedev4  Elona O Matveeva3  Nikita N Fedotov4  Nadezda A Khaustova3  Diana V Maltseva3 
[1] Department of Anatomy II: Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany;Institute of General Pathology and Pathophysiology, Moscow, Russia;SRC Bioclinicum, Moscow, Russia;Faculty of Mechanics and Mathematics of Lomonosov Moscow State University, Moscow, Russia
关键词: Breast cancer;    Gene expression;    Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR);    Microarrays;    Reference genes;   
Others  :  802834
DOI  :  10.1186/2043-9113-3-13
 received in 2013-03-08, accepted in 2013-07-12,  发布年份 2013
PDF
【 摘 要 】

Background

Quantification and normalization of RT-qPCR data critically depends on the expression of so called reference genes. Our goal was to develop a strategy for the selection of reference genes that utilizes microarray data analysis and combines known approaches for gene stability evaluation and to select a set of appropriate reference genes for research and clinical analysis of breast samples with different receptor and cancer status using this strategy.

Methods

A preliminary search of reference genes was based on high-throughput analysis of microarray datasets. The final selection and validation of the candidate genes were based on the RT-qPCR data analysis using several known methods for expression stability evaluation: comparative ∆Ct method, geNorm, NormFinder and Haller equivalence test.

Results

A set of five reference genes was identified: ACTB, RPS23, HUWE1, EEF1A1 and SF3A1. The initial selection was based on the analysis of publically available well-annotated microarray datasets containing different breast cancers and normal breast epithelium from breast cancer patients and epithelium from cancer-free patients. The final selection and validation were performed using RT-qPCR data from 39 breast cancer biopsy samples. Three genes from the final set were identified by the means of microarray analysis and were novel in the context of breast cancer assay. We showed that the selected set of reference genes is more stable in comparison not only with individual genes, but also with a system of reference genes used in commercial OncotypeDX test.

Conclusion

A selection of reference genes for RT-qPCR can be efficiently performed by combining a preliminary search based on the high-throughput analysis of microarray datasets and final selection and validation based on the analysis of RT-qPCR data with a simultaneous examination of different expression stability measures. The identified set of reference genes proved to be less variable and thus potentially more efficient for research and clinical analysis of breast samples comparing to individual genes and the set of reference genes used in OncotypeDX assay.

【 授权许可】

   
2013 Maltseva et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708031827606.pdf 346KB PDF download
Figure 1. 75KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Vandesompele J, Kubista M, Pfaffl M: Reference gene validation software for improved normalization. In Real-Time PCR: Current Technology and Applications. Edited by Logan J, Edwards K, Saunders N. UK: Caister Academic Press; 2009:47-83.
  • [2]Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N: A multigene assay to predict recurrence of tamoxifen treated node-negative breast cancer. N Engl J Med 2004, 351:2817-2826.
  • [3]Cardoso F, Van’t Veer L, Rutgers E, Loi S, Mook S, Piccart-Gebhart MJ: Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol 2008, 26:729-735.
  • [4]Huggett J, Dheda K, Bustin S, Zumla A: Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005, 6:279-284.
  • [5]Bustin SA: Developments in real-time PCR research and molecular diagnostics. Expert Rev Mol Diagn 2010, 10:713-715.
  • [6]Tricarico C, Pinzani P, Bianchi S, Paglierani M, Distante V, Pazzagli M, Bustin SA, Orlando C: Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal Biochem 2002, 309:293-300.
  • [7]Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, Rook GA, Zumla A: The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem 2005, 344:141-143.
  • [8]Silver N, Best S, Jiang J, Thein SL: Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 2006, 7:33. BioMed Central Full Text
  • [9]Krainova NA, Khaustova NA, Makeeva DS, Fedotov NN, Gudim EA, Riabenko EA, Galatenco VV, Sakharov DA, Maltseva DV, Tonevitsky AG: Evaluation of potential reference genes for qRT-PCR data normalization in HeLa cells. Appl Biochem Microbiol 2013.
  • [10]Lanoix D, Lacasse AA, St-Pierre J, Taylor SC, Ethier-Chiasson M, Lafond J, Vaillancourt C: Quantitative PCR pitfalls: the case of the human placenta. Mol Biotechnol 2012, 52:234-243.
  • [11]Warrington JA, Nair A, Mahadevappa M, Tsyganskaya M: Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol Genomics. 2000, 2:143-147.
  • [12]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3:RESEARCH0034.
  • [13]Galiveti CR, Rozhdestvensky TS, Brosius J, Lehrach H, Konthur Z: Application of housekeeping npcRNAs for quantitative expression analysis of human transcriptome by real-time PCR. RNA 2010, 16:450-461.
  • [14]Hruz T, Wyss M, Docquier M, Pfaffl MW, Masanetz S, Borghi L, Verbrugghe P, Kalaydjieva L, Bleuler S, Laule O, Descombes P, Gruissem W, Zimmermann P: RefGenes: identification of reliable and condition specific reference genes for RT-qPCR data normalization. BMC Genomics. 2011, 12:156. BioMed Central Full Text
  • [15]Hsiao LL, Dangond F, Yoshida T, Hong R, Jensen RV, Misra J, Dillon W, Lee KF, Clark KE, Haverty P, Weng Z, Mutter GL, Frosch MP, MacDonald ME, Milford EL, Crum CP, Bueno R, Pratt RE, Mahadevappa M, Warrington JA, Stephanopoulos G, Stephanopoulos G, Gullans SR: A compendium of gene expression in normal human tissues. Physiol Genomics 2001, 7(2):97-104.
  • [16]Bustin SA: Why the need for qPCR publication guidelines? - The case for MIQE. Methods 2010, 50(4):217-226.
  • [17]Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR: Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 2005, 139:5-17.
  • [18]Cassan-Wang H, Soler M, Yu H, Camargo EL, Carocha V, Ladouce N, Savelli B, Paiva JA, Leplé JC, Grima-Pettenati J: Reference Genes for High-Throughput Quantitative Reverse Transcription-PCR Analysis of Gene Expression in Organs and Tissues of Eucalyptus Grown in Various Environmental Conditions. Plant Cell Physiol. 2012, 53:2101-2116.
  • [19]Narsai R, Ivanova A, Ng S, Whelan J: Defining reference genes in Oryza sativa using organ, development, biotic and abiotic transcriptome datasets. BMC Plant Biol. 2010, 10:56. BioMed Central Full Text
  • [20]Alexander H, Jenkins BD, Rynearson TA, Saito MA, Mercier ML, Dyhrman ST: Identifying reference genes with stable expression from high throughput sequence data. Front Microbiol 2012, 3:385.
  • [21]Fedrigo O, Warner LR, Pfefferle AD, Babbitt CC, Cruz-Gordillo P, Wray GA: A pipeline to determine RT-QPCR control genes for evolutionary studies: application to primate gene expression across multiple tissues. PLoS One 2010, 5(9):e12545.
  • [22]Zhou L, Lim QE, Wan G, Too HP: Normalization with genes encoding ribosomal proteins but not GAPDH provides an accurate quantification of gene expressions in neuronal differentiation of PC12 cells. BMC Genomics. 2010, 11:75. BioMed Central Full Text
  • [23]Szabo A, Perou CM, Karaca M, Perreard L, Palais R, Quackenbush JF, Bernard PS: Statistical modeling for selecting housekeeper genes. Genome Biol 2004, 5:R59. BioMed Central Full Text
  • [24]Popovici V, Goldstein DR, Antonov J, Jaggi R, Delorenzi M, Wirapati P: Selecting control genes for RT-QPCR using public microarray data. BMC Bioinforma 2009, 10:42. BioMed Central Full Text
  • [25]Gabrielsson BG, Olofsson LE, Sjögren A, Jernås M, Elander A, Lönn M, Rudemo M, Carlsson LM: Evaluation of reference genes for studies of gene expression in human adipose tissue. Obes Res 2005, 13(4):649-652.
  • [26]Stamova BS, Apperson M, Walker WL, Tian Y, Xu H, Adamczy P, Zhan X, Liu DZ, Ander BP, Liao IH, Gregg JP, Turner RJ, Jickling G, Lit L, Sharp FR: Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood. BMC Med Genomics. 2009, 2:49. BioMed Central Full Text
  • [27]Gur-Dedeoglu B, Konu O, Bozkurt B, Ergul G, Seckin S, Yulug IG: Identification of endogenous reference genes for qRT-PCR analysis in normal matched breast tumor tissues. Oncol Res 2009, 17(8):353-365.
  • [28]Cheng WC, Chang CW, Chen CR, Tsai ML, Shu WY, Li CY, Hsu IC: Identification of reference genes across physiological states for qRT-PCR through microarray meta-analysis. PLoS One 2011, 6(2):e17347.
  • [29]Kwon MJ, Oh E, Lee S, Roh MR, Kim SE, Lee Y, Choi YL, In YH, Park T, Koh SS, Shin YK: Identification of novel reference genes using multiplatform expression data and their validation for quantitative gene expression analysis. PLoS One 2009, 4(7):e6162.
  • [30]Andersen CL, Jensen JL, Ørntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004, 64(15):5245-5250.
  • [31]Haller F, Kulle B, Schwager S, Gunawan B, Von Heydebreck A, Sültmann H, Füzesi L: Equivalence test in quantitative reverse transcription polymerase chain reaction: confirmation of reference genes suitable for normalization. Anal Biochem 2004, 335:1-9.
  • [32]Bustin S: The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009, 55(4):611-622.
  • [33]Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30:207-210.
  • [34]Barrett T, Troup DB, Wilhite SE, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A: NCBI GEO: archive for functional genomics data sets—10 years on. Nucleic Acids Res 2011, 39(suppl. 1):D1005-D1010.
  • [35]Symmans WF, Hatzi C, Sotiriou C, Andre F, Peintinger F, Regitnig P, Daxenbichler G, Desmedt C, Domont J, Marth C, Delaloge S, Bauernhofer T, Valero V, Booser DJ, Hortobagyi GN, Pusztai L: Genomic index of sensitivity to endocrine therapy for breast cancer. J Clin Oncol 2010, 28:4111-4119.
  • [36]Chen DT, Nasir A, Culhane A, Venkataramu C, Fulp W, Rubio R, Wang T, Agrawal D, McCarthy SM, Gruidl M, Bloom G, Anderson T, White J, Quackenbush J, Yeatman T: Proliferative genes dominate malignancy-risk gene signature in histologically-normal breast tissue. Breast Cancer Res Treat. 2010, 119:335-346.
  • [37]Dedeurwaerder S, Desmedt C, Calonne E, Singhal SK, Haibe-Kains B, Defrance M, Michiels S, Volkmar M, Deplus R, Luciani J, Lallemand F, Larsimont D, Toussaint J, Haussy S, Rothé F, Rouas G, Metzger O, Majjaj S, Saini K, Putmans P, Hames G, Van Baren N, Coulie PG, Piccart M, Sotiriou C, Fuks F: DNA methylation profiling reveals a predominant immune component in breast cancers. EMBO Mol Med. 2011, 3:726-741.
  • [38]Graham K, Delas Morenas A, Tripathi A, King C, Kavanah M, Mendez J, Stone M, Slama J, Miller M, Antoine G, Willers H, Sebastiani P, Rosenberg CL: Gene expression in histologically normal epithelium from breast cancer patients and from cancer-free prophylactic mastectomy patients shares a similar profile. Br J Cancer 2010, 102:1284-1293.
  • [39]Gentlemen RC, Carey VC, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5:R80.1-R80.16.
  • [40]Stratova C: Introduction to the xps Package: Overview. URL: http://bioconductor.org/packages/2.11/bioc/vignettes/xps/inst/doc/xps.pdf webcite
  • [41]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4:249-264.
  • [42]Primer3 (v. 0.4.0). [http://frodo.wi.mit.edu/ webcite]
  • [43]Nolan T, Hands RE, Bustin S: Quantification of mRNA using real-time RT-PCR. Nat Protoc 2006, 1(3):1559-1582.
  • [44]NCBI/Primer-BLAST. [http://www.ncbi.nlm.nih.gov/tools/primer-blast/ webcite]
  • [45]OligoAnalyzer 3.1. [http://eu.idtdna.com/analyzer/Applications/OligoAnalyzer/ webcite]
  • [46]NormFinder software. [http://www.mdl.dk/publicationsnormfinder.htm webcite]
  • [47]Lyng MB, Laenkholm AV, Pallisgaard N, Ditzel HJ: Identificationof genes for normalization of real-time RT-PCR data in breast carcinomas. BMC Cancer. 2008, 8:20. BioMed Central Full Text
  • [48]De Kok JB, Roelofs RW, Giesendorf BA, Pennings JL, Waas ET, Feuth T, Swinkels DW, Span PN: Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest 2005, 85(1):154-159.
  文献评价指标  
  下载次数:5次 浏览次数:14次