期刊论文详细信息
GigaScience
Metabolome of human gut microbiome is predictive of host dysbiosis
Yang Dai1  Peter E. Larsen2 
[1] Bioengineering Department, University of Illinois at Chicago, 851 South Morgan, SEO218, Chicago 60607, IL, USA;Argonne National Laboratory, Biosciences Division, 9700 South Cass Ave, Argonne 60439, IL, USA
关键词: Microbial communities;    Metagenomics;    Metabolome modeling;    Machine learning;    Human microbiome;    Gut microbiome;    Dysbiosis;   
Others  :  1224896
DOI  :  10.1186/s13742-015-0084-3
 received in 2015-04-30, accepted in 2015-08-28,  发布年份 2015
PDF
【 摘 要 】

Background

Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. However, the community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent on its community metabolome; an emergent property of the microbiome.

Results

Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles.

Conclusions

Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.

【 授权许可】

   
2015 Larsen and Dai.

【 预 览 】
附件列表
Files Size Format View
20150915051601299.pdf 1730KB PDF download
Fig. 8. 19KB Image download
Fig. 7. 20KB Image download
Fig. 6. 21KB Image download
Fig. 5. 85KB Image download
Fig. 4. 91KB Image download
Fig. 3. 61KB Image download
Fig. 2. 94KB Image download
Fig. 1. 39KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Yoon SS, Kim EK, Lee WJ. Functional genomic and metagenomic approaches to understanding gut microbiota-animal mutualism. Curr Opin Microbiol. 2015; 24:38-46.
  • [2]Wang WL, Xu SY, Ren ZG, Tao L, Jiang JW, Zheng SS. Application of metagenomics in the human gut microbiome. World J Gastroenterol. 2015; 21(3):803-14.
  • [3]Gosalbes MJ, Abellan JJ, Durban A, Perez-Cobas AE, Latorre A, Moya A. Metagenomics of human microbiome: beyond 16 s rDNA. Clin Microbiol Infect. 2012; 18 Suppl 4:47-9.
  • [4]Bou Saab J, Losa D, Chanson M, Ruez R. Connexins in respiratory and gastrointestinal mucosal immunity. FEBS Lett. 2014; 588(8):1288-96.
  • [5]Walsh CJ, Guinane CM, O’Toole PW, Cotter PD. Beneficial modulation of the gut microbiota. FEBS Lett. 2014; 588(22):4120-30.
  • [6]Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol. 2013; 28 Suppl 4:9-17.
  • [7]Hennessy AA, Ross RP, Fitzgerald GF, Caplice N, Stanton C. Role of the gut in modulating lipoprotein metabolism. Curr Cardiol Rep. 2014; 16(8):515.
  • [8]Fuller M. Determination of protein and amino acid digestibility in foods including implications of gut microbial amino acid synthesis. Br J Nutr. 2012; 108 Suppl 2:S238-46.
  • [9]Dutton RJ, Turnbaugh PJ. Taking a metagenomic view of human nutrition. Curr Opin Clin Nutr Metab Care. 2012; 15(5):448-54.
  • [10]Cantorna MT, McDaniel K, Bora S, Chen J, James J. Vitamin D, immune regulation, the microbiota, and inflammatory bowel disease. Exp Biol Med (Maywood). 2014; 239(11):1524-30.
  • [11]Greer RL, Morgun A, Shulzhenko N. Bridging immunity and lipid metabolism by gut microbiota. J Allergy Clin Immunol. 2013; 132(2):253-62.
  • [12]Calder PC. Feeding the immune system. Proc Nutr Soc. 2013; 72(3):299-309.
  • [13]Romano-Keeler J, Weitkamp JH. Maternal influences on fetal microbial colonization and immune development. Pediatr Res. 2015; 77(1–2):189-95.
  • [14]Tamboli CP, Neut C, Desreumaux P, Colombel JF. Dysbiosis in inflammatory bowel disease. Gut. 2004; 53(1):1-4.
  • [15]Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014; 146(6):1489-99.
  • [16]Cammarota G, Ianiro G, Cianci R, Bibbo S, Gasbarrini A, Curro D. The involvement of gut microbiota in inflammatory bowel disease pathogenesis: potential for therapy. Pharmacol Ther. 2015; 149:191-212.
  • [17]Han DS. Current status and prospects of intestinal microbiome studies. Intest Res. 2014; 12(3):178-83.
  • [18]Collins SM. A role for the gut microbiota in IBS. Nat Rev Gastroenterol Hepatol. 2014; 11(8):497-505.
  • [19]Dupont HL. Review article: evidence for the role of gut microbiota in irritable bowel syndrome and its potential influence on therapeutic targets. Aliment Pharmacol Ther. 2014; 39(10):1033-42.
  • [20]Collado MC, Rautava S, Isolauri E, Salminen S. Gut microbiota: a source of novel tools to reduce the risk of human disease? Pediatr Res. 2015; 77(1–2):182-8.
  • [21]McLean MH, Dieguez D, Miller LM, Young HA. Does the microbiota play a role in the pathogenesis of autoimmune diseases? Gut. 2015; 64(2):332-41.
  • [22]Viaud S, Daillere R, Boneca IG, Lepage P, Pittet MJ, Ghiringhelli F et al.. Harnessing the intestinal microbiome for optimal therapeutic immunomodulation. Cancer Res. 2014; 74(16):4217-21.
  • [23]Kipanyula MJ, Seke Etet PF, Vecchio L, Farahna M, Nukenine EN, Nwabo Kamdje AH. Signaling pathways bridging microbial-triggered inflammation and cancer. Cell Signal. 2013; 25(2):403-16.
  • [24]Sanz Y, Moya-Perez A. Microbiota, inflammation and obesity. Adv Exp Med Biol. 2014; 817:291-317.
  • [25]Cox LM, Blaser MJ. Antibiotics in early life and obesity. Nat Rev Endocrinol. 2015; 11(3):182-90.
  • [26]Gohir W, Ratcliffe EM, Sloboda DM. Of the bugs that shape us: maternal obesity, the gut microbiome, and long-term disease risk. Pediatr Res. 2015; 77(1–2):196-204.
  • [27]Moran CP, Shanahan F. Gut microbiota and obesity: role in aetiology and potential therapeutic target. Best Pract Res Clin Gastroenterol. 2014; 28(4):585-97.
  • [28]Luna RA, Foster JA. Gut brain axis: diet microbiota interactions and implications for modulation of anxiety and depression. Curr Opin Biotechnol. 2015; 32:35-41.
  • [29]Fond G, Boukouaci W, Chevalier G, Regnault A, Eberl G, Hamdani N et al.. The “psychomicrobiotic”: Targeting microbiota in major psychiatric disorders: A systematic review. Pathol Biol (Paris). 2015; 63(1):35-42.
  • [30]Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF. The impact of microbiota on brain and behavior: mechanisms & therapeutic potential. Adv Exp Med Biol. 2014; 817:373-403.
  • [31]West CE, Renz H, Jenmalm MC, Kozyrskyj AL, Allen KJ, Vuillermin P et al.. The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gut microbiota therapies. J Allergy Clin Immunol. 2015; 135(1):3-13.
  • [32]Shanahan F, Quigley EM. Manipulation of the microbiota for treatment of IBS and IBD-challenges and controversies. Gastroenterology. 2014; 146(6):1554-63.
  • [33]Brandt LJ, Aroniadis OC. An overview of fecal microbiota transplantation: techniques, indications, and outcomes. Gastrointest Endosc. 2013; 78(2):240-9.
  • [34]Xu MQ, Cao HL, Wang WQ, Wang S, Cao XC, Yan F et al.. Fecal microbiota transplantation broadening its application beyond intestinal disorders. World J Gastroenterol. 2015; 21(1):102-11.
  • [35]Goudarzi M, Seyedjavadi SS, Goudarzi H, Mehdizadeh Aghdam E, Nazeri S. Clostridium difficile Infection: Epidemiology, Pathogenesis, Risk Factors, and Therapeutic Options. Scientifica (Cairo). 2014; 2014:916826.
  • [36]Rojo D, Hevia A, Bargiela R, Lopez P, Cuervo A, Gonzalez S et al.. Ranking the impact of human health disorders on gut metabolism: Systemic lupus erythematosus and obesity as study cases. Sci Rep-Uk. 2015; 6:5.
  • [37]Theriot CM, Koenigsknecht MJ, Carlson PE, Hatton GE, Nelson AM, Li B et al.. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun. 2014; 5:3114.
  • [38]Ursell LK, Haiser HJ, Van Treuren W, Garg N, Reddivari L, Vanamala J et al.. The intestinal metabolome: an intersection between microbiota and host. Gastroenterology. 2014; 146(6):1470-6.
  • [39]Kostic AD, Gevers D, Siljander H, Vatanen T, Hyotylainen T, Hamalainen AM et al.. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 2015; 17(2):260-73.
  • [40]MetaHIT. Metagenomics of the Human Intestinal Tract Available from:. http://www. metahit.eu/
  • [41]HMP. Human Microbiome Project Available from:. http://hmpdacc. org
  • [42]David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al.. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505(7484):559-63.
  • [43]Gerber GK. The dynamic microbiome. FEBS Lett. 2014; 588(22):4131-9.
  • [44]Putignani L, Del Chierico F, Petrucca A, Vernocchi P, Dallapiccola B. The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediatr Res. 2014; 76(1):2-10.
  • [45]Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A et al.. Genomic variation landscape of the human gut microbiome. Nature. 2013; 493(7430):45-50.
  • [46]The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012 Jun 14;486 (7402):207–14.
  • [47]Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body. Nature. 2014; 509(7500):357-60.
  • [48]Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM et al.. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science. 2014; 345(6200):1048-52.
  • [49]David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn MC, Perrotta A et al.. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 2014; 15(7):R89. BioMed Central Full Text
  • [50]Larsen PE, Scott N, Post AF, Field D, Knight R, Hamada Y et al.. Satellite remote sensing data can be used to model marine microbial metabolite turnover. ISME J. 2015; 9(1):166-79.
  • [51]Larsen PE, Collart FR, Dai Y. Predicting Ecological Roles in the Rhizosphere Using Metabolome and Transportome Modeling. PLOS ONE. 2015; doi:10.1371/journal.pone.0132837.
  • [52]Larsen PE, Field D, Gilbert JA. Predicting bacterial community assemblages using an artificial neural network approach. Nat Methods. 2012; 9(6):621-5.
  • [53]Mumby PJ, Clarke KR, Harborne AR. Weighting species abundance estimates for marine resource assessment. Aquat Conserv. 1996; 6(3):115-20.
  • [54]Russell WR, Duncan SH, Scobbie L, Duncan G, Cantlay L, Calder AG et al.. Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res. 2013; 57(3):523-35.
  • [55]Larque E, Sabater-Molina M, Zamora S. Biological significance of dietary polyamines. Nutrition. 2007; 23(1):87-95.
  • [56]Garenaux A, Caza M, Dozois CM. The Ins and Outs of siderophore mediated iron uptake by extra-intestinal pathogenic Escherichia coli. Vet Microbiol. 2011; 153(1–2):89-98.
  • [57]Oves-Costales D, Kadi N, Challis GL. The long-overlooked enzymology of a nonribosomal peptide synthetase-independent pathway for virulence-conferring siderophore biosynthesis. Chem Commun (Camb). 2009; 21(43):6530-41.
  • [58]Rooks MG, Veiga P, Wardwell-Scott LH, Tickle T, Segata N, Michaud M et al.. Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission. ISME J. 2014; 8(7):1403-17.
  • [59]Rossi M, Amaretti A, Raimondi S. Folate production by probiotic bacteria. Nutrients. 2011; 3(1):118-34.
  • [60]Boesjes M, Brufau G. Metabolic effects of bile acids in the gut in health and disease. Curr Med Chem. 2014; 21(24):2822-9.
  • [61]ENZYME. Enzyme nomenclature database. Available from:. http://enzyme. expasy.org/
  • [62]Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA et al.. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013; 31(9):814−+.
  • [63]Larsen PE, Collart F, Field D, Meyer F, Keegan K, Henry C, et al. Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset. Microb Inform Exp. 2011;1:4.
  • [64]R-Project. The R Project for Statistical Computing. Available from:. http://www. r-project.org/
  • [65]e1071. Misc Functions of the Department of Statistics, Probability Theory Group. Available from:. https://cran. r-project.org/web/packages/e1071/index.html
  • [66]Peter E Larsen, Yang Dai (2015): Supporting materials for: “Metabolome of Human Gut Microbiome is Predictive of Host Dysbiosis”. GigaScience Database. http://dx.doi.org/10.5524/100163.
  • [67]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al.. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11):2498-504.
  • [68]Cytoscape. Cytoscape is an open source software platform for visualizing complex networks and integrating these with any type of attribute data. Available from:. http://cytoscape. org/
  文献评价指标  
  下载次数:104次 浏览次数:23次