期刊论文详细信息
Journal of Neuroinflammation
M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia
Mike Dragunow1  Richard L M Faull1  Maurice A Curtis1  Edward W Mee3  Peter M Bergin3  Robyn L Oldfield2  Hannah M Gibbons1  Amy M Smith1 
[1] Center for Brain Research, The University of Auckland, Auckland, New Zealand;Lab Plus, Auckland 1023, New Zealand;Auckland City Hospital, Auckland 1023, New Zealand
关键词: PU.1;    Morphology;    Microglial activation;    Human glial culture;    Phagocytosis;   
Others  :  1152618
DOI  :  10.1186/1742-2094-10-85
 received in 2013-04-23, accepted in 2013-07-09,  发布年份 2013
PDF
【 摘 要 】

Background

Microglia are the primary immune cells of the brain whose phenotype largely depends on their surrounding micro-environment. Microglia respond to a multitude of soluble molecules produced by a variety of brain cells. Macrophage colony-stimulating factor (M-CSF) is a cytokine found in the brain whose receptor is expressed by microglia. Previous studies suggest a critical role for M-CSF in brain development and normal functioning as well as in several disease processes involving neuroinflammation.

Methods

Using biopsy tissue from patients with intractable temporal epilepsy and autopsy tissue, we cultured primary adult human microglia to investigate their response to M-CSF. Mixed glial cultures were treated with 25 ng/ml M-CSF for 96 hours. Proliferation and phagocytosis assays, and high through-put immunocytochemistry, microscopy and image analysis were performed to investigate microglial phenotype and function.

Results

We found that the phenotype of primary adult human microglia was markedly changed following exposure to M-CSF. A greater number of microglia were present in the M-CSF- treated cultures as the percentage of proliferating (BrdU and Ki67-positive) microglia was greatly increased. A number of changes in protein expression occurred following M-CSF treatment, including increased transcription factors PU.1 and C/EBPβ, increased DAP12 adaptor protein, increased M-CSF receptor (CSF-1R) and IGF-1 receptor, and reduced HLA-DP, DQ, DR antigen presentation protein. Furthermore, a distinct morphological change was observed with elongation of microglial processes. These changes in phenotype were accompanied by a functional increase in phagocytosis of Aβ1-42 peptide.

Conclusions

We show here that the cytokine M-CSF dramatically influences the phenotype of adult human microglia. These results pave the way for future investigation of M-CSF-related targets for human therapeutic benefit.

【 授权许可】

   
2013 Smith et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406200051178.pdf 2420KB PDF download
Figure 9. 86KB Image download
Figure 8. 79KB Image download
Figure 7. 69KB Image download
Figure 6. 68KB Image download
Figure 5. 83KB Image download
Figure 4. 139KB Image download
Figure 3. 76KB Image download
Figure 2. 121KB Image download
Figure 4 . 169KB Image download
【 图 表 】

Figure 4 .

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Butovsky O, Talpalar A, Ben-Yaakov K, Schwartz M: Activation of microglia by aggregated B-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-y and IL-4 render them protective. Mol Cell Neurosci 2005, 29:381-393.
  • [2]Boulanger LM: Immune proteins in brain development and synaptic plasticity. Neuron 2009, 64:93-109.
  • [3]Dijkstra IM, Hulshof S, Van derValk P, Boddeke HWGM, Biber K: Cutting edge: activity of human adult microglia in response to CC chemokine ligand 21. J Immunol 2004, 172:2744-2747.
  • [4]Lambert C, Ase AR, Seguela P, Antel JP: Distinct migratory and cytokine responses of human microglia and macrophages to ATP. Brain Behav Immun 2010, 24:1241-1248.
  • [5]Akiyama H, Arai T, Kondo H, Tanno E, Haga C, Ikeda K: Cell mediators of inflammation in the Alzheimer disease brain. Alzheimer Dis Assoc Disord 2000, 14:47-53.
  • [6]Sapp E, Kegel KB, Aronin N, Hashikawa T, et al.: Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 2001, 60:161.
  • [7]Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, Piccini P: Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 2007, 130:1759-1766.
  • [8]Saijo K, Glass CK: Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 2011, 11:775-787.
  • [9]Yang T, Zhou D, Stefan H: Why mesial temporal lobe epilepsy with hippocampal sclerosis is progressive: uncontrolled inflammation drives disease progression? J Neurol Sci 2010, 296:1-6.
  • [10]Graeber MB: Changing face of microglia. Science 2010, 330:783-788.
  • [11]Akiyama H, Nishimura T, Kondo H, Ikeda K, Hayashi Y, McGeer PL: Expression of the receptor for macrophage colony stimulating factor by brain microglia and its upregulation in brains of patients with Alzheimer’s disease and amyotrophic lateral sclerosis. Brain Res 1994, 639:171-174.
  • [12]Du Yan S, Zhu H, Fu J, Yan SF, Roher A, Tourtellotte WW, Rajavashisth T, Chen X, Godman GC, Stern D, Schmidt AM: Amyloid-B peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer’s disease. Proc Natl Acad Sci 1997, 94:5296-5301.
  • [13]Thery C, Hetier E, Evrard C, Mallat M: Expression of macrophage colony-stimulating factor gene in the mouse brain during development. J Neurosci Res 1990, 26:129-133.
  • [14]Lee SC, Liu W, Roth P, Dickson DW, Berman JW, Brosnan CF: Macrophage colony-stimulating factor in human fetal astrocytes and microglia. Differential regulation by cytokines and lipopolysaccharide, and modulation of class II MHC on microglia. J Immunol 1993, 150:594-604.
  • [15]Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, et al.: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330:841-845.
  • [16]Vidyadaran S, Ooi YY, Subramaiam H, Badiei A, Abdullah M, Ramasamy R, Seow HF: Effects of macrophage colony-stimulating factor on microglial responses to lipopolysaccharide and beta amyloid. Cell Immunol 2009, 259:105-110.
  • [17]Yamamoto S, Nakajima K, Kohsaka S: Macrophage-colony stimulating factor as an inducer of microglial proliferation in axotomized rat facial nucleus. J Neurochem 2010, 115:1057-1067.
  • [18]Liu W, Brosnan C, Dickson D, Lee S: Macrophage colony-stimulating factor mediates astrocyte-induced microglial ramification in human fetal central nervous system culture. Am J Pathol 1994, 145:48-53.
  • [19]Brummer E, Stevens DA: Effect of macrophage colony-stimulating factor (M-CSF) on macrophage morphology, phagocytosis, and intracellular multiplication of Histoplasma capsulatum. Int J Immunopharmacol 1994, 16:171-176.
  • [20]Imai Y, Kohsaka S: Intracellular signaling in M-CSF-induced microglia activation: role of Iba1. Glia 2002, 40:164-174.
  • [21]Liu W, Xu G, Jiang C, Tian J: Macrophage colony-stimulating factor and its receptor signaling augment glycated albumin-induced retinal microglial inflammation in vitro. BMC Cell Biol 2011, 12:5.
  • [22]Henkel GW, McKercher SR, Maki RA: Identification of three genes up-regulated in PU.1 rescued monocytic precursor cells. Int Immunol 2002, 14:723-732.
  • [23]Smith AM, Gibbons HM, Oldfield RL, Bergin PM, Mee EW, Faull RLM, Dragunow M: The transcription factor PU.1 is critical for viability and function of human brain microglia. Glia 2013, 61:929-942.
  • [24]Celada A, Borras F, Soler C, Lloberas J, Klemsz M, Van Beveren C, McKercher S, Maki R: The transcription factor PU.1 is involved in macrophage proliferation. J Exp Med 1996, 184:61-69.
  • [25]Zhang DE, Hetherington CJ, Chen HM, Tenen DG: The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage-colony-stimulating factor receptor. Mol Cell Biol 1994, 14:373-381.
  • [26]Michaelson M, Bieri P, Mehler M, Xu H, Arezzo J, Pollard J, Kessler J: CSF-1 deficiency in mice results in abnormal brain development. Development 1996, 122:2661-2672.
  • [27]Alterman R, Stanley E: Colony stimulating factor-1 expression in human glioma. Mol Chem Neuropathol 1994, 21:177-188.
  • [28]Papavasiliou A, Mehler M, Mabie P, Marmur R, Qingbin S, Keating R, Kessler J: Paracrine regulation of colony-stimulating factor-1 in medulloblastoma: implications for pathogenesis and therapeutic interventions. Neurosurgery 1997, 41:916-923.
  • [29]Lentz MR, Degaonkar M, Mohamed MA, Kim H, Conant K, Halpern EF, Sacktor N, Barker PB, Pomper MG: Exploring the relationship of macrophage colony-stimulating factor levels on neuroaxonal metabolism and cognition during chronic human immunodeficiency virus infection. J Neurovirol 2010, 16:368-376.
  • [30]Boissonneault V, Filali M, Lessard M, Relton J, Wong G, Rivest S: Powerful beneficial effects of macrophage colony-stimulating factor on (beta)-amyloid deposition and cognitive impairment in Alzheimer’s disease. Brain 2009, 132:1078-1092.
  • [31]Lue L-F, Rydel R, Brigham EF, Yang L-B, Hampel H, Murphy GM, Brachova L, Yan S-D, Walker DG, Shen Y, Rogers J: Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia 2001, 35:72-79.
  • [32]Werner K, Bitsch A, Bunkowski S, Hemmerlein B, Brück W: The relative number of macrophages/microglia expressing macrophage colony-stimulating factor and its receptor decreases in multiple sclerosis lesions. Glia 2002, 40:121-129.
  • [33]Davis MM: Immunology taught by humans. Sci Transl Med 2012, 4:117fs2.
  • [34]Dragunow M: The adult human brain in preclinical drug development. Nature Reviews 2008, 7:659-666.
  • [35]Streit WJ: Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci 2006, 29:506-510.
  • [36]Lynch AM, Murphy KJ, Deighan BF, O’Reilly JA, Gun’ko YK, Cowley TR, Gonzalez-Reyes RE, Lynch MA: The impact of glial activation in the aging brain. Aging and disease 2010, 1:262-278.
  • [37]Hart AD, Wyttenbach A, Teeling JL, Hugh Perry V: Age related changes in microglial phenotype vary between CNS regions: grey versus white matter differences. Brain Behav Immun 2012, 26:754-765.
  • [38]Gibbons HM, Hughes SM, Van Roon-Mom W, Greenwood JM, Narayan PJ, Teoh HH, Bergin PM, Mee EW, Wood PC, Faull RLM, Dragunow M: Cellular composition of human glial cultures from adult biopsy brain tissue. J Neurosci Methods 2007, 166:89-98.
  • [39]Gibbons HM, Smith AM, Teoh HH, Bergin PM, Mee EW, Faull RLM, Dragunow M: Valproic acid induces microglial dysfunction, not apoptosis, in human glial cultures. Neurobiol Dis 2011, 41:96-103.
  • [40]Smith AM, Gibbons HM, Dragunow M: Valproic acid enhances microglial phagocytosis of amyloid-b1-42. Neuroscience 2010, 169:505-515.
  • [41]Dragunow M: High-content analysis in neuroscience. Nat Rev Neurosci 2008, 9:779-788.
  • [42]Satoh J-i, Tabunoki H, Ishida T, Yagishita S, Jinnai K, Futamura N, Kobayashi M, Toyoshima I, Yoshioka T, Enomoto K, et al.: Immunohistochemical characterization of microglia in Nasu-Hakola disease brains. Neuropathology 2011, 31:363-375.
  • [43]Gow DJ, Sester DP, Hume DA: CSF-1, IGF-1, and the control of postnatal growth and development. J Leukoc Biol 2010, 88:475-481.
  • [44]Feng R, Desbordes SC, Xie HF, Tillo ES, Pixley F, Stanley ER, Graf T: PU.1 and C/EBP alpha/beta convert fibroblasts into macrophage-like cells. Proc Natl Acad Sci U S A 2008, 105:6057-6062.
  • [45]Walton MR, Gibbons H, MacGibbon GA, Sirimanne E, Saura J, Gluckman PD, Dragunow M: PU.1 expression in microglia. J Neuroimmunol 2000, 104:109-115.
  • [46]Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, et al.: Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000, 6:916-919.
  • [47]Rogers J, Lue L-F: Microglial chemotaxis, activation, and phagocytosis of amyloid beta-peptide as linked phenomena in Alzheimer’s disease. Neurochem Int 2001, 39:333-340.
  • [48]Durafourt BA, Moore CS, Zammit DA, Johnson TA, Zaguia F, Guiot M-C, Bar-Or A, Antel JP: Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 2012, 60:717-727.
  • [49]Weigelt K, Ernst W, Walczak Y, Ebert S, Loenhardt T, Klug M, Rehli M, Weber BHF, Langmann T: Dap12 expression in activated microglia from retinoschisin-deficient retina and its PU.1-dependent promoter regulation. J Leukoc Biol 2007, 82:1564-1574.
  • [50]Takahashi K, Rochford CDP, Neumann H: Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 2005, 201:647-657.
  • [51]Lambertsen KL, Deierborg T, Gregersen R, Clausen BH, Wirenfeldt M, Nielsen HH, Dalmau I, Diemer NH, Dagnaes-Hansen F, Johansen FF, et al.: Differences in origin of reactive microglia in bone marrow chimeric mouse and rat after transient global ischemia. J Neuropathol Exp Neurol 2011, 70:481-494.
  • [52]Zhan X, Kim C, Sharp FR: Very brief focal ischemia simulating transient ischemic attacks (TIAs) can injure brain and induce Hsp70 protein. Brain Res 2008, 1234:183-197.
  • [53]Wierzba-Bobrowicz T, Gwiazda E, Kosno-Kruszewska E, Lewandowska E, Lechowicz W, Bertrand E, Szpak GM, Schmidt-Sidor B: Morphological analysis of active microglia - rod and ramified microglia in human brains affected by some neurological diseases (SSPE, Alzheimer’s disease and Wilson’s disease). Folia Neuropathol 2002, 40:125-131.
  • [54]Melief J, Koning N, Schuurman KG, Van De Garde MDB, Smolders J, Hoek RM, Van Eijk M, Hamann J, Huitinga I: Phenotyping primary human microglia: tight regulation of LPS responsiveness. Glia 2012, 60:1506-1517.
  • [55]Ling X, Kamangar S, Boytim ML, Kelman Z, Huie P, Lyu S-C, Sibley RK, Hurwitz J, Clayberger C, Krensky AM: Proliferating cell nuclear antigen as the cell cycle sensor for an HLA-derived peptide blocking T Cell proliferation. J Immunol 2000, 164:6188-6192.
  • [56]Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL: MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-a-PU.1 pathway. Nature Medicine 2010, 17:64-70.
  • [57]Ramji DP, Foka P: CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 2002, 365:561-575.
  • [58]Valente T, Mancera P, Tusell JM, Serratosa J, Saura J: C/EBPbeta expression in activated microglia in amyotrophic lateral sclerosis. Neurobiol Aging 2011, 33:2186-2199.
  • [59]Cortes-Canteli M, Luna-Medina R, Sanz-SanCristobal M, Alvarez-Barrientos A, Santos A, Perez-Castillo A: CCAAT/enhancer binding protein beta deficiency provides cerebral protection following excitotoxic injury. J Cell Sci 2008, 121:1224-1234.
  • [60]Straccia M, Gresa-Arribas N, Dentesano G, Ejarque-Ortiz A, Tusell J, Serratosa J, Sola C, Saura J: Pro-inflammatory gene expression and neurotoxic effects of activated microglia are attenuated by absence of CCAAT/enhancer binding protein beta. J Neuroinflammation 2011, 8:156.
  • [61]Gutsch R, Kandemir JD, Pietsch D, Cappello C, Meyer J, Simanowski K, Huber R, Brand K: CCAAT/enhancer-binding protein beta inhibits proliferation in monocytic cells by affecting the retinoblastoma protein/E2F/cyclin E pathway but is not directly required for macrophage morphology. J Biol Chem 2011, 286:22716-22729.
  • [62]Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L, Ugel S, Sonda N, Bicciato S, Falisi E, et al.: Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 2010, 32:790-802.
  • [63]Komuro I, Yokota Y, Yasuda S, Iwamoto A, Kagawa KS: CSF-induced and HIV-1-mediated distinct regulation of Hck and C/EBPbeta represent a heterogeneous susceptibility of monocyte-derived macrophages to M-tropic HIV-1 Infection. J Exp Med 2003, 198:443-453.
  • [64]Zhang DE, Hetherington CJ, Meyers S, Rhoades KL, Larson CJ, Chen HM, Hiebert SW, Tenen DG: CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha 2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol Cell Biol 1996, 16:1231-1240.
  • [65]Tissieres P, Araud T, Ochoda A, Drifte G, Dunn-Siegrist I, Pugin J: Cooperation between PU.1 and CAAT/enhancer-binding protein beta is necessary to induce the expression of the MD-2 Gene. J Biol Chem 2009, 284:26261-26272.
  • [66]Yang Z, Wara-aswapati N, Chen C, Tsukada J, Auron PE: NF-IL6 (C/EBPb) vigorously activates il1b gene expression via a Spi-1 (PU.1) protein-protein tether. J Biol Chem 2000, 275:21272-21277.
  • [67]Carney L, Pierce A, Rijnen M, Gonzalez Sanchez MB, Hamzah HG, Zhang L, Tamura T, Whetton AD: THOC5 couples M-CSF receptor signaling to transcription factor expression. Cell Signal 2009, 21:309-316.
  • [68]Otero K, Turnbull IR, Poliani PL, Vermi W, Cerutti E, Aoshi T, Tassi I, Takai T, Stanley SL, Miller M, et al.: Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and (beta)-catenin. Nat Immunol 2009, 10:734-743.
  • [69]Weigelt K, Carvalho LA, Drexhage RC, Wijkhuijs A, De Wit H, Van Beveren NJM, Birkenhager TK, Bergink V, Drexhage HA: TREM-1 and DAP12 expression in monocytes of patients with severe psychiatric disorders. EGR3, ATF3 and PU.1 as important transcription factors. Brain Behav Immun 2011, 25:1162-1169.
  • [70]Wessells J, Yakar S, Johnson PF: Critical prosurvival roles for C/EBPbeta and insulin-like growth factor I in macrophage tumor cells. Mol Cell Biol 2004, 24:3238-3250.
  • [71]Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R, Wu G, Zhou A, Behrens D, et al.: Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 2008, 320:807-811.
  • [72]Chihara T, Suzu S, Hassan R, Chutiwitoonchai N, Hiyoshi M, Motoyoshi K, Kimura F, Okada S: IL-34 and M-CSF share the receptor Fms but are not identical in biological activity and signal activation. Cell Death Differ 2010, 17:1917-1927.
  文献评价指标  
  下载次数:9次 浏览次数:6次