期刊论文详细信息
Journal of Neuroinflammation
Fingolimod induces neuroprotective factors in human astrocytes
Markus Krumbholz3  Edgar Meinl5  Reinhard Hohlfeld1  Frank Weber2  Verena Loleit5  Benno Pütz2  Peter Weber2  Hans Faber2  Sigrid Schwarz4  Johannes Melms4  Heike Rübsamen5  Johann Hofereiter5  Franziska S. Hoffmann5 
[1] Munich Cluster for Systems Neurology (SyNergy), Munich, Germany;Max Planck Institute of Psychiatry, Munich, 80804, Germany;Center of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany;German Center for Neurodegenerative Diseases (DZNE) and Technical University, Munich, 81377, Germany;Institute of Clinical Neuroimmunology, Ludwig Maximilian University, Munich, 81377, Germany
关键词: OAS2;    MX1;    CXCL10/IP10;    B-cell activating factor of the TNF family/TNFSF13b;    Heparin-binding EGF-like growth factor;    Interleukin 11;    Leukemia inhibitory factor;    Neuroprotection;    Astrocyte;    Fingolimod;   
Others  :  1228651
DOI  :  10.1186/s12974-015-0393-6
 received in 2015-03-02, accepted in 2015-09-07,  发布年份 2015
【 摘 要 】

Background

Fingolimod (FTY720) is the first sphingosine-1-phosphate (S1P) receptor modulator approved for the treatment of multiple sclerosis. The phosphorylated active metabolite FTY720-phosphate (FTY-P) interferes with lymphocyte trafficking. In addition, it accumulates in the CNS and reduces brain atrophy in multiple sclerosis (MS), and neuroprotective effects are hypothesized.

Methods

Human primary astrocytes as well as human astrocytoma cells were stimulated with FTY-P or S1P. We analyzed gene expression by a genome-wide microarray and validated induced candidate genes by quantitative PCR (qPCR) and ELISA. To identify the S1P-receptor subtypes involved, we applied a membrane-impermeable S1P analog (dihydro-S1P), receptor subtype specific agonists and antagonists, as well as RNAi silencing.

Results

FTY-P induced leukemia inhibitory factor (LIF), interleukin 11 (IL11), and heparin-binding EGF-like growth factor (HBEGF) mRNA, as well as secretion of LIF and IL11 protein. In order to mimic an inflammatory milieu as observed in active MS lesions, we combined FTY-P application with tumor necrosis factor (TNF). In the presence of this key inflammatory cytokine, FTY-P synergistically induced LIF, HBEGF, and IL11 mRNA, as well as secretion of LIF and IL11 protein. TNF itself induced inflammatory, B-cell promoting, and antiviral factors (CXCL10, BAFF, MX1, and OAS2). Their induction was blocked by FTY-P. After continuous exposure of cells to FTY-P or S1P for up to 7 days, the extent of induction of neurotrophic factors and the suppression of TNF-induced inflammatory genes declined but was still detectable. The induction of neurotrophic factors was mediated via surface S1P receptors 1 (S1PR1) and 3 (S1PR3).

Conclusions

We identified effects of FTY-P on astrocytes, namely induction of neurotrophic mediators (LIF, HBEGF, and IL11) and inhibition of TNF-induced inflammatory genes (CXCL10, BAFF, MX1, and OAS2). This supports the view that a part of the effects of fingolimod may be mediated via astrocytes.

【 授权许可】

   
2015 Hoffmann et al.

附件列表
Files Size Format View
Fig. 6. 57KB Image download
Fig. 5. 39KB Image download
Fig. 4. 68KB Image download
80KB Image download
Fig. 2. 27KB Image download
Fig. 1. 79KB Image download
Fig. 6. 57KB Image download
Fig. 5. 39KB Image download
Fig. 4. 68KB Image download
Fig. 3. 29KB Image download
Fig. 2. 27KB Image download
Fig. 1. 79KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 1.

Fig. 2.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, et al.: A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 2010, 362:387-401.
  • [2]Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X, et al.: Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 2010, 362:402-15.
  • [3]Strub GM, Maceyka M, Hait NC, Milstien S, Spiegel S: Extracellular and intracellular actions of sphingosine-1-phosphate. Adv Exp Med Biol 2010, 688:141-55.
  • [4]Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, Kim EY, et al.: Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 2010, 465:1084-8.
  • [5]Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, et al.: The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 2002, 277:21453-7.
  • [6]Jo E, Sanna MG, Gonzalez-Cabrera PJ, Thangada S, Tigyi G, Osborne DA, et al.: S1P1-selective in vivo-active agonists from high- throughput screening: off-the-shelf chemical probes of receptor interactions, signaling, and fate. Chem Biol 2005, 12:703-15.
  • [7]Mullershausen F, Zecri F, Cetin C, Billich A, Guerini D, Seuwen K: Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors. Nat Chem Biol 2009, 5:428-34.
  • [8]Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, et al.: Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 2010, 9:883-97.
  • [9]Mullershausen F, Craveiro LM, Shin Y, Cortes-Cros M, Bassilana F, Osinde M, et al.: Phosphorylated FTY720 promotes astrocyte migration through sphingosine-1-phosphate receptors. J Neurochem 2007, 102:1151-61.
  • [10]Singer II, Tian M, Wickham LA, Lin J, Matheravidathu SS, Forrest MJ, et al.: Sphingosine-1-phosphate agonists increase macrophage homing, lymphocyte contacts, and endothelial junctional complex formation in murine lymph nodes. J Immunol 2005, 175:7151-61.
  • [11]Rosen H, Goetzl EJ: Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 2005, 5:560-70.
  • [12]Foster CA, Howard LM, Schweitzer A, Persohn E, Hiestand PC, Balatoni BZ, et al.: Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis. J Pharmacol Exp Ther 2007, 323:469-75.
  • [13]Dev KK, Mullershausen F, Mattes H, Kuhn RR, Bilbe G, Hoyer D, et al.: Brain sphingosine-1-phosphate receptors: implication for FTY720 in the treatment of multiple sclerosis. Pharmacol Ther 2008, 117:77-93.
  • [14]Seifert G, Schilling K, Steinhauser C: Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 2006, 7:194-206.
  • [15]Stadelmann C, Kerschensteiner M, Misgeld T, Bruck W, Hohlfeld R, Lassmann H: BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain 2002, 125:75-85.
  • [16]Farina C, Aloisi F, Meinl E: Astrocytes are active players in cerebral innate immunity. Trends Immunol 2007, 28:138-45.
  • [17]Sorensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, et al.: Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 1999, 103:807-15.
  • [18]Krumbholz M, Theil D, Derfuss T, Rosenwald A, Schrader F, Monoranu CM, et al.: BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med 2005, 201:195-200.
  • [19]Trapp BD, Nave KA: Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 2008, 31:247-69.
  • [20]Radue EW, Barkhof F, Kappos L, Sprenger T, Haring DA, de Vera A, et al.: Correlation between brain volume loss and clinical and MRI outcomes in multiple sclerosis. Neurology 2015, 84(8):784-93.
  • [21]Sormani M, De Stefano N, Francis G, Sprenger T, Chin P, Radue E, et al.: Fingolimod effect on brain volume loss independently contributes to its effect on disability. Mult Scler 2015, 21(7):916-24.
  • [22]Calabresi PA, Radue EW, Goodin D, Jeffery D, Rammohan KW, Reder AT, et al.: Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol 2014, 13:545-56.
  • [23]Choi JW, Gardell SE, Herr DR, Rivera R, Lee CW, Noguchi K, et al.: FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc Natl Acad Sci 2011, 108:751-6.
  • [24]Colombo E, Dario MD, Capitolo E, Chaabane L, Newcombe J, Martino G, et al.: Fingolimod may support neuroprotection via blockade of astrocyte nitric oxide. Ann Neurol 2014, 76(3):325-37.
  • [25]Aloisi F, Borsellino G, Samoggia P, Testa U, Chelucci C, Russo G, et al.: Astrocyte cultures from human embryonic brain: characterization and modulation of surface molecules by inflammatory cytokines. J Neurosci Res 1992, 32:494-506.
  • [26]Krumbholz M, Faber H, Steinmeyer F, Hoffmann LA, Kümpfel T, Pellkofer H, et al.: Interferon-{beta} increases BAFF levels in multiple sclerosis: implications for B cell autoimmunity. Brain 2008, 131:1415-63.
  • [27]Theil D, Derfuss T, Paripovic I, Herberger S, Meinl E, Schueler O, et al.: Latent herpesvirus infection in human trigeminal ganglia causes chronic immune response. Am J Pathol 2003, 163:2179-84.
  • [28]R Core Team: R: a language and environment for statistical computing. 3.0.1 edition. R Foundation for Statistical Computing, Vienna, Austria; 2013.
  • [29]Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al.: Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 2015, 12:115-21.
  • [30]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5:R80. BioMed Central Full Text
  • [31]Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M: Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 2002, 18(Suppl 1):S96-104.
  • [32]Blom T, Bergelin N, Meinander A, Lof C, Slotte JP, Eriksson JE, et al.: An autocrine sphingosine-1-phosphate signaling loop enhances NF-kappaB-activation and survival. BMC Cell Biol 2010, 11:45. BioMed Central Full Text
  • [33]Rosen H, Sanna MG, Cahalan SM, Gonzalez-Cabrera PJ: Tipping the gatekeeper: S1P regulation of endothelial barrier function. Trends Immunol 2007, 28:102-7.
  • [34]Suomalainen L, Pentikäinen V, Dunkel L: Sphingosine-1-phosphate inhibits nuclear factor κB activation and germ cell apoptosis in the human testis independently of its receptors. Am J Surg Pathol 2005, 166:773-81.
  • [35]Van Brocklyn JR, Lee M-J, Menzeleev R, Olivera A, Edsall L, Cuvillier O, et al.: Dual actions of sphingosine-1-phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J Cell Biol 1998, 142:229-40.
  • [36]Liu Y, Peng M, Zang D, Zhang B: Leukemia inhibitory factor promotes nestin-positive cells, and increases gp130 levels in the Parkinson disease mouse model of 6-hydroxydopamine. Neurosciences (Riyadh) 2013, 18:363-70.
  • [37]Chollangi S, Wang J, Martin A, Quinn J, Ash JD: Preconditioning-induced protection from oxidative injury is mediated by leukemia inhibitory factor receptor (LIFR) and its ligands in the retina. Neurobiol Dis 2009, 34:535-44.
  • [38]Park SK, Solomon D, Vartanian T: Growth factor control of CNS myelination. Dev Neurosci 2001, 23:327-37.
  • [39]Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, et al.: Astrocytes promote myelination in response to electrical impulses. Neuron 2006, 49:823-32.
  • [40]Putoczki T, Ernst M: More than a sidekick: the IL-6 family cytokine IL-11 links inflammation to cancer. J Leukoc Biol 2010, 88:1109-17.
  • [41]Zhang PL, Izrael M, Ainbinder E, Ben-Simchon L, Chebath J, Revel M: Increased myelinating capacity of embryonic stem cell derived oligodendrocyte precursors after treatment by interleukin-6/soluble interleukin-6 receptor fusion protein. Mol Cell Neurosci 2006, 31:387-98.
  • [42]Gurfein BT, Zhang Y, López CB, Argaw AT, Zameer A, Moran TM, et al.: IL-11 regulates autoimmune demyelination. J Immunol 2009, 183:4229-40.
  • [43]Jin K, Mao XO, Sun Y, Xie L, Jin L, Nishi E, et al.: Heparin-binding epidermal growth factor-like growth factor: hypoxia-inducible expression in vitro and stimulation of neurogenesis in vitro and in vivo. J Neurosci 2002, 22:5365-73.
  • [44]Farkas LM, Krieglstein K: Heparin-binding epidermal growth factor-like growth factor (HB-EGF) regulates survival of midbrain dopaminergic neurons. J Neural Transm 2002, 109:267-77.
  • [45]Krumbholz M, Derfuss T, Hohlfeld R, Meinl E: B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat Rev Neurol 2012, 8:613-23.
  • [46]Tada S, Yasui T, Nakatsuji Y, Okuno T, Koda T, Mochizuki H, et al.: BAFF controls neural cell survival through BAFF receptor. PLoS One 2013., 8Article ID e70924
  • [47]Zhang L, Zheng S, Wu H, Wu Y, Liu S, Fan M, et al.: Identification of BLyS (B lymphocyte stimulator), a non-myelin-associated protein, as a functional ligand for nogo-66 receptor. J Neurosci 2009, 29:6348-52.
  • [48]Fife BT, Kennedy KJ, Paniagua MC, Lukacs NW, Kunkel SL, Luster AD, et al.: CXCL10 (IFN-γ-inducible protein-10) control of encephalitogenic CD4+ T cell accumulation in the central nervous system during experimental autoimmune encephalomyelitis. J Immunol 2001, 166:7617-24.
  • [49]Hofman FM, Hinton DR, Johnson K, Merrill JE: Tumor necrosis factor identified in multiple sclerosis brain. J Exp Med 1989, 170:607-12.
  • [50]Sharief MK, Hentges R: Association between tumor necrosis factor-α and disease progression in patients with multiple sclerosis. N Engl J Med 1991, 325:467-72.
  • [51]Selmaj KW, Raine CS: Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol 1988, 23:339-46.
  • [52]Rossi S, Motta C, Studer V, Barbieri F, Buttari F, Bergami A, et al. Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Mult Scler. 2014;20(3):304-12. doi:10.1177/1352458513498128
  • [53]Bosch X, Saiz A, Ramos-Casals M: Monoclonal antibody therapy-associated neurological disorders. Nat Rev Neurol 2011, 7:165-72.
  • [54]Kaltsonoudis E, Voulgari PV, Konitsiotis S, Drosos AA: Demyelination and other neurological adverse events after anti-TNF therapy. Autoimmun Rev 2014, 13:54-8.
  • [55]Brambilla R, Ashbaugh JJ, Magliozzi R, Dellarole A, Karmally S, Szymkowski DE, et al.: Inhibition of soluble tumour necrosis factor is therapeutic in experimental autoimmune encephalomyelitis and promotes axon preservation and remyelination. Brain 2011, 134:2736-54.
  • [56]Van Hauwermeiren F, Vandenbroucke RE, Libert C: Treatment of TNF mediated diseases by selective inhibition of soluble TNF or TNFR1. Cytokine Growth Factor Rev 2011, 22:311-9.
  • [57]Wu C, Leong S, Moore C, Cui Q, Gris P, Bernier L-P, et al.: Dual effects of daily FTY720 on human astrocytes in vitro: relevance for neuroinflammation. J Neuroinflammation 2013, 10:41. BioMed Central Full Text
  • [58]Haller O, Kochs G: Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity. J Interferon Cytokine Res 2011, 31:79-87.
  • [59]Hovanessian AG: On the discovery of interferon-inducible, double-stranded RNA activated enzymes: the 2′-5′oligoadenylate synthetases and the protein kinase PKR. Cytokine Growth Factor Rev 2007, 18:351-61.
  • [60]Floyd-Smith G, Slattery E, Lengyel P: Interferon action: RNA cleavage pattern of a (2′-5′)oligoadenylate–dependent endonuclease. Science 1981, 212:1030-2.
  • [61]Cinamon G, Zachariah MA, Lam OM, Foss FW Jr, Cyster JG: Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat Immunol 2008, 9:54-62.
  • [62]Garris CS, Wu L, Acharya S, Arac A, Blaho VA, Huang Y, et al.: Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation. Nat Immunol 2013, 14:1166-72.
  文献评价指标  
  下载次数:32次 浏览次数:11次