期刊论文详细信息
Journal of Biomedical Science
Profiling the circulating miRNAs in mice exposed to gram-positive and gram-negative bacteria by Illumina small RNA deep sequencing
Ching-Hua Hsieh3  Chia-Jung Wu3  Siou-Ling Tzeng3  Yi-Chun Chen3  Yi-Chan Wu3  Tsu-Hsiang Lu3  Johnson Chia-Shen Yang3  Shao-Chun Wu2  Cheng-Shyuan Rau1 
[1] Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City 833, Taiwan;Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City 833, Taiwan;Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No.123, Ta-Pei Road, Kaohsiung City 833, Niao-Song District, Taiwan
关键词: Small RNA deep sequencing;    Gram-negative bacteria;    Gram-positive bacteria;    Circulating microRNAs;    microRNAs (miRNAs);   
Others  :  1139198
DOI  :  10.1186/s12929-014-0106-y
 received in 2014-08-14, accepted in 2014-12-15,  发布年份 2015
PDF
【 摘 要 】

Background

We profiled the expression of circulating microRNAs (miRNAs) in mice using Illumina small RNA deep sequencing in order to identify the miRNAs that may potentially be used as biomarkers to distinguish between gram-negative and gram-positive bacterial infections.

Results

Recombinant-specific gram-negative pathogen Escherichia coli (Xen14) and gram-positive pathogen Staphylococcus aureus (Xen29) were used to induce bacterial infection in mice at a concentration of 1 × 108 bacteria/100 μL of phosphate buffered saline (PBS). Small RNA libraries generated from the serum of mice after exposure to PBS, Xen14, Xen29, and Xen14 + Xen29 via the routes of subcutaneous injection (I), cut wound (C), or under grafted skin (S) were analyzed using an Illumina HiSeq2000 Sequencer. Following exposure to gram-negative bacteria alone, no differentially expressed miRNA was found in the injection, cut, or skin graft models. Exposure to mixed bacteria induced a similar expression pattern of the circulating miRNAs to that induced by gram-positive bacterial infection. Upon gram-positive bacterial infection, 9 miRNAs (mir-193b-3p, mir-133a-1-3p, mir-133a-2-3p, mir-133a-1-5p, mir-133b-3p, mir-434-3p, mir-127-3p, mir-676-3p, mir-215-5p) showed upregulation greater than 4-fold with a p-value < 0.01. Among them, mir-193b-3p, mir-133a-1-3p, and mir-133a-2-3p presented the most common miRNA targets expressed in the mice exposed to gram-positive bacterial infection.

Conclusions

This study identified mir-193b-3p, mir-133a-1-3p, and mir-133a-2-3p as potential circulating miRNAs for gram-positive bacterial infections.

【 授权许可】

   
2015 Rau et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150321090625244.pdf 2029KB PDF download
Figure 3. 14KB Image download
Figure 2. 47KB Image download
Figure 1. 34KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Stefani G, Slack FJ: Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 2008, 9(3):219-30.
  • [2]Macha MA, Seshacharyulu P, Krishn SR, Pai P, Rachagani S, Jain M, et al.: MicroRNAs (miRNA) as Biomarker(s) for prognosis and diagnosis of gastrointestinal (GI) cancers. Curr Pharm Design 2014, 20(33):5287-97.
  • [3]Rao P, Benito E, Fischer A: MicroRNAs as biomarkers for CNS disease. Front Mol Neurosci. 2013, 6:39.
  • [4]Tousoulis D, Androulakis E, Papageorgiou N, Siasos G, Latsios G, Charakida M, et al.: Novel biomarkers assessing endothelial dysfunction: role of microRNAs. Curr Top Med Chem 2013, 13(13):1518-26.
  • [5]Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, et al.: Serum microRNAs are promising novel biomarkers. PLoS One 2008, 3(9):e3148.
  • [6]Kosaka N, Iguchi H, Ochiya T: Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 2010, 101(10):2087-92.
  • [7]Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al.: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008, 18(10):997-1006.
  • [8]Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al.: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008, 105(30):10513-8.
  • [9]Zeng L, Cui J, Wu H, Lu Q: The emerging role of circulating microRNAs as biomarkers in autoimmune diseases. Autoimmunity 2014, 47(7):419-29.
  • [10]Sayed AS, Xia K, Salma U, Yang T, Peng J: Diagnosis, prognosis and therapeutic role of circulating miRNAs in cardiovascular diseases. Heart Lung Circ 2014, 23(6):503-10.
  • [11]Wang HJ, Zhang PJ, Chen WJ, Jie D, Dan F, Jia YH, et al.: Characterization and Identification of novel serum microRNAs in sepsis patients with different outcomes. Shock (Augusta, Ga) 2013, 39(6):480-7.
  • [12]Tacke F, Roderburg C, Benz F, Cardenas DV, Luedde M, Hippe HJ, et al.: Levels of circulating miR-133a are elevated in sepsis and predict mortality in critically ill patients. Crit Care Med 2014, 42(5):1096-104.
  • [13]Qi P, Cheng SQ, Wang H, Li N, Chen YF, Gao CF: Serum microRNAs as biomarkers for hepatocellular carcinoma in Chinese patients with chronic hepatitis B virus infection. PLoS One 2011, 6(12):e28486.
  • [14]Zhang X, Zhang Z, Dai F, Shi B, Chen L, Zhang X, et al.: Comparison of circulating, hepatocyte specific messenger RNA and microRNA as biomarkers for chronic hepatitis B and C. PLoS One 2014, 9(3):e92112.
  • [15]Miotto P, Mwangoka G, Valente IC, Norbis L, Sotgiu G, Bosu R, et al.: miRNA signatures in Sera of patients with active pulmonary tuberculosis. PLoS One 2013, 8(11):e80149.
  • [16]Manzano-Roman R, Siles-Lucas M: MicroRNAs in parasitic diseases: potential for diagnosis and targeting. Mol Biochem Parasitol 2012, 186(2):81-6.
  • [17]Tritten L, Burkman E, Moorhead A, Satti M, Geary J, Mackenzie C, et al.: Detection of circulating parasite-derived MicroRNAs in Filarial infections. PLoS Negl Trop Dis 2014, 8(7):e2971.
  • [18]Hsieh CH, Yang JC, Jeng JC, Chen YC, Lu TH, Tzeng SL, et al.: Circulating microRNA signatures in mice exposed to lipoteichoic acid. J Biomed Sci. 2013, 20:2. BioMed Central Full Text
  • [19]Hsieh CH, Rau CS, Jeng JC, Chen YC, Lu TH, Wu CJ, et al.: Whole blood-derived microRNA signatures in mice exposed to lipopolysaccharides. J Biomed Sci. 2012, 19:69. BioMed Central Full Text
  • [20]Fabbri M: TLRs as miRNA receptors. Cancer Res 2012, 72(24):6333-7.
  • [21]Van Nieuwerburgh F, Soetaert S, Podshivalova K, Ay-Lin Wang E, Schaffer L, Deforce D, et al.: Quantitative bias in illumina TruSeq and a novel post amplification barcoding strategy for multiplexed DNA and small RNA deep sequencing. PLoS One 2011, 6(10):e26969.
  • [22]Xie C, Jiang XH, Zhang JT, Sun TT, Dong JD, Sanders AJ, et al.: CFTR suppresses tumor progression through miR-193b targeting urokinase plasminogen activator (uPA) in prostate cancer. Oncogene 2013, 32(18):2282-91. 2291.e2281-2287
  • [23]Hu H, Li S, Liu J, Ni B: MicroRNA-193b modulates proliferation, migration, and invasion of non-small cell lung cancer cells. Acta Biochim Biophys Sin 2012, 44(5):424-30.
  • [24]Chen J, Zhang X, Lentz C, Abi-Daoud M, Pare GC, Yang X, et al.: miR-193b regulates Mcl-1 in melanoma. Am J Pathol 2011, 179(5):2162-8.
  • [25]Xu C, Liu S, Fu H, Li S, Tie Y, Zhu J, et al.: MicroRNA-193b regulates proliferation, migration and invasion in human hepatocellular carcinoma cells. Eur J Cancer 2010, 46(15):2828-36.
  • [26]Wang H, Zhang P, Chen W, Feng D, Jia Y, Xie L: Serum microRNA signatures identified by Solexa sequencing predict sepsis patients’ mortality: a prospective observational study. PLoS One 2012, 7(6):e38885.
  • [27]Jeng SF, Rau CS, Liliang PC, Wu CJ, Lu TH, Chen YC, et al.: Profiling muscle-specific microRNA expression after peripheral denervation and reinnervation in a rat model. J Neurotrauma 2009, 26(12):2345-53.
  • [28]Townley-Tilson WH, Callis TE, Wang D: MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. Int J Biochem Cell Biol 2010, 42(8):1252-5.
  • [29]Yu H, Lu Y, Li Z, Wang Q: MicroRNA-133: Expression, function and therapeutic potential in muscle diseases and cancer. Curr Drug Targets 2014, 15(9):817-28.
  • [30]Ning B, Qi X, Li Y, Liu H, Zhang F, Qin C: Biventricular pacing cardiac contractility modulation improves cardiac contractile function via upregulating SERCA2 and miR-133 in a rabbit model of congestive heart failure. Cell Physiol Biochem 2014, 33(5):1389-99.
  • [31]Peng L, Chun-guang Q, Bei-fang L, Xue-zhi D, Zi-hao W, Yun-fu L, et al.: Clinical impact of circulating miR-133, miR-1291 and miR-663b in plasma of patients with acute myocardial infarction. Diagn Pathol. 2014, 9:89. BioMed Central Full Text
  • [32]Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al.: MicroRNA-133 controls cardiac hypertrophy. Nat Med 2007, 13(5):613-8.
  文献评价指标  
  下载次数:22次 浏览次数:10次