期刊论文详细信息
Clinical Proteomics
Virtual screening and evaluation of Ketol-Acid Reducto-Isomerase (KARI) as a putative drug target for Aspergillosis
Eun-ki Kim1  Shalini Kumari2  Vivek K Morya1 
[1] Department of Biological Engineering, Inha University, Incheon, Republic of Korea, 402-751;Department of Biotechnology, H.I.M.T, Greater Noida, U. P., India, 201306
关键词: Pharmacophore;    Ketol acid reductoisomerase (KARI);    Aspergillus;    Aspergillosis;   
Others  :  1026363
DOI  :  10.1186/1559-0275-9-1
 received in 2011-11-22, accepted in 2012-02-03,  发布年份 2012
PDF
【 摘 要 】

Aspergillus is a leading causative agent for fungal morbidity and mortality in immuno-compromised patients. To identify a putative target to design or identify new antifungal drug, against Aspergillus is required. In our previous work, we have analyzed the various biochemical pathways, and we found Ketol Acid Reducto-Isomerase (KARI) an enzyme involves in the amino acid biosynthesis, could be a better target. This enzyme was found to be unique by comparing to host proteome through BLASTp analysis. A homology based model of KARI was generated by Swiss model server. The generated model had been validated by PROCHECK and WHAT IF programs. The Zinc library was generated within the limitation of the Lipinski rule of five, for docking study. Based on the dock-score six molecules have been studied for ADME/TOX analysis and subjected for pharmacophore model generation. The Zinc ID of the potential inhibitors is ZINC00720614, ZINC01068126, ZINC0923, ZINC02090678, ZINC00663057 and ZINC02284065 and found to be pharmacologically active agonist and antagonist of KARI. This study is an attempt to Insilco evaluation of the KARI as a drug target and the screened inhibitors could help in the development of the better drug against Aspergillus.

【 授权许可】

   
2012 Morya et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140903120246108.pdf 1001KB PDF download
Figure 5. 21KB Image download
Figure 4. 74KB Image download
Figure 3. 38KB Image download
Figure 2. 36KB Image download
Figure 1. 70KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Denning DW, Follansbee S, Scolaro M, Norris S, Edelstein D, Stevens DA: Pulmonary aspergillosis in AIDS. N Engl J Med 1991, 324:654-662.
  • [2]Denning DW, Riniotis K, Dobrashian R, Sambatakou H: Chronic cavitary and fibrosing pulmonary and pleural aspergillosis: Case series, proposed nomenclature and review. Clin Infect Dis 2003, 37(3):S265-S280.
  • [3]Denning DW: Invasive aspergillosis. Clin Infect Dis 1998, 26:781-805.
  • [4]St. Leger RJ, Screen SE, Shams- Pirzadeh B: Lack of Host Specialization in Aspergillus flavus. Appl Environ Microbiol 2000, 66:320-324.
  • [5]Yu J, Cleveland TE, Nierman WC, Bennett JW: Aspergillus flavus genomics: gateway to human and animal health, food safety, and crop resistance to diseases. Rev Iberoam Micol 2005, 22:194-202.
  • [6]Morya VK, Nayak S, Mishra SK, Kamal Yadav D: Morphological characteristics and total mycelial protein profile of indigenously isolated Aspergillus strains. J Mycol Pl Pathol 2009, 39(2):216-219.
  • [7]Morya VK, Dewaker V, Mecarty SD, Singh R: In silico analysis of metabolic pathways for identification of putative drug targets for Staphylococcus aureus. J Comput Sci Syst Biol 2010, 3(3):062-069.
  • [8]Morya VK, Kumari S, Kim Eun-Ki: Imperative pathway analysis to identify the potential drug target for Aspergillus infection. International Journal of Latest Trends in Computing 2011, 2(1):178-182.
  • [9]Bryan J: Synthesis of the aspartate family and branched-chain amino acids. In The Biochemistry of Plants. A Comprehensive Treatise. Volume 5. Edited by Miflin BJ. Academic Press, New York; 1980::403-453.
  • [10]Aulabaugh A, Schloss JV: Oxalyl hydroxamates as reactionintermediate analogues for ketol-acid reductoisomerase. Biochemistry 1990, 29:2824-2830.
  • [11]Chunduru SK, Mrachko GT, Calvo JC: Mechanisms of ketol acid reducto isomerase-steady state analysis and metal ion requirement. Biochemistry 1989, 28:486-493.
  • [12]Dumas R, Joyard J, Douce R: Purification and characterization of acetohydroxyacid reductoisomerase from spinach chloroplasts. Biochem J 1989, 262:971-976.
  • [13]KEGG - Kyoto Encyclopedia of Gene and Genome [http://www.genome.jp/kegg] webcite
  • [14]NCBI - National Center for Biotechnology Information [http://www.blast.ncbi.nlm.nih.gov] webcite
  • [15]Morya VK, Yadav S, Kim EK, Yadav D: In silico characterization of alkaline proteases protein sequences of different species of Aspergillus. Appl Biochem Biotechnol 2011, in press. DOI: 10.1007/s12010-011-9420-y
  • [16]Peitsch MC: Protein modeling by E-mail. Nature Biotechnology 1995, 13:658-660.
  • [17]Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T: The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 2009, 37:D387-D392.
  • [18]Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics 2006, 22:195-201.
  • [19]Laskoswki RA, MacArthur MW, Moss DS, Thorton JM: PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 1993, 26:283-291.
  • [20]Hooft RWW, Vriend G, Sander C, Abola EE: Errors in protein structures. Nature 1996, 381:272-272.
  • [21]Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 24:4876-4882.
  • [22]Irwin JJ, Shoichet BK: ZINC - A Free Database of Commercially Available Compounds for Virtual Screening. J Chem Inf Model 2005, 45(1):177-182.
  • [23]Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 2008, 36(1):D901-6.
  • [24]Lipnski CA, Lombardo F, Dominy BW, Feeny PJ: Experimental and computational approach to estimate solubility and permeability in drug discovery and development setting. Adv Drug Deliver Rev 2001, 1:3-26.
  • [25]Thomsen R, Christensen MH: MolDock: A New Technique for High-Accuracy Molecular Docking. J Med Chem 2006, 49(11):3315-3321.
  • [26]Hendlich M, Rippmann F, Barnickel G: BALI: Automatic assignment of bond and atom types for protein ligands in the brookhaven protein databank. J Chem Inf Comput Sci 1997, 37:774-778.
  • [27]Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The protein data bank. Nucleic Acids Res 2000, 28:235-242.
  • [28]Wolber G, Langer T: Combigen: A novel software package for the rapid generation of virtual combinatorial libraries. In Rational Approaches to drug design, Prous Science Edited by Höltje H-D, Sippl W. 2000, 390-399.
  • [29]Wolber G, Kosara R: Pharmacophores from macromolecular complexes with LigandScout. In Pharmacophores and Pharmacophore Searches Edited by Langer T, Hoffmann RD. 2006, 32:131-150. Wiley-VCH
  • [30]Balakin KV, Ivanenkov YA, Savchuk NP, Ivashchenko AA, Ekins S: Comprehensive Computational Assessment of ADME Properties Using Mapping Techniques. Current Drug Discovery Technologies 2005, 2:99-113.
  • [31]Rönn O, Öhman J, Haid D, Nordvarg H, Hörnsten L, Flensburg J, Forsberg E, Fenyö D, Bergling H, Woffendin G, Scigelova M: GE Healthcare, Uppsala, Sweden, 2Thermo Fisher Scientific, Hemel Hempstead, UK Proteomics in ADME/Tox Studies: High-Throughput Identification and Differential Expression Analysis of Proteins in Mouse Liver Following Drug Treatment. 2007. Applicationj Note, 345
  • [32]Pharma algorithm [http://www.pharma.algorithm.com] webcite
  • [33]Chothia C, Lesk AM: The relation between the divergence of sequence and structure in proteins. EMBO J 1986, 5:823-36.
  • [34]Sander C, Schneider R: Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 1991, 9:56-68.
  • [35]Vijayan R, Subbarao N, Mallick BN: Insilico Modeling of alpha1A-Adrenoceptor: Interaction of its Normal and Mutated Active Sites with Noradrenaline as well as its Agonist and Antagonist. Am J Biochem & Biotech 2007, 3(4):216-224.
  • [36]Tyagi R, Duquerroy S, Navaza J, Guddat LW, Duggleby RG: The crystal structure of a bacterial class II ketol-acid reductoisomerase: domain conservation and evolution. Protein Sci 2005, 14(12):3089-100.
  • [37]Bairoch A, Bucher P, Hofmann K: The PROSITE database, its status in 1997. Nucleic Acids Res 1997, 25(1):217-221.
  • [38]Stephen FA, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database searchprograms. Nucleic Acids Res 1997, 25:3389-3402.
  • [39]Stephen FA, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schaffer AA, Yu KY: Protein database searchesusing compositionally adjusted substitution matrices. FEBS J 2005, 272:5101-5109.
  • [40]Wieman H, Tøndel K, Anderssen E, Drabløs F: Homology-Based Modelling of Targets for Rational Drug Design. Mini Rev Med Chem 2004, 4:793-804.
  • [41]Wolber G, Seidel T, Bendix F, Langer T: Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discovery Today 2008, 13(1/2):23-29.
  • [42]Lavalle SM, Finn PW, Kavraki LE, Latombe JC: A Randomized Kinematics-Based Approach to Pharmacophore-Constrained Conformational Search and Database Screening. J Comput Chem 2000, 21(9):731-747.
  • [43]Lipinski CA: Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 2001, 44:235-249.
  • [44]Ekins S: Systems-ADME/Tox: Resources and network approaches. J Pharmacol Toxicol 2006, 53:38-66.
  • [45]Nicholson JK, Wilson ID: Understanding global, systems biology: Metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2003, 2:668-676.
  • [46]Van de Waterbeemd H, Gifford E: ADMET Insilico Modelling: Towards Prediction Paradise? Nat Rev Drug Discov 2003, 2:192-204.
  • [47]Van de Waterbeemd H, Smith DA, Beaumont K, Walker DK: Property-based design: Optimisation of drug absorption and pharmacokinetics. J Med Chem 2001, 44:1313-1333.
  文献评价指标  
  下载次数:39次 浏览次数:2次