期刊论文详细信息
Journal of Neuroinflammation
A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion
Jessica A Filosa1  Helena W Morrison1 
[1] Georgia Health Sciences University, 1120 15th, St, Augusta, GA, 30912, USA
关键词: Reperfusion;    Ischemic stroke;    Mouse;    Morphology;    Microglia;   
Others  :  1160080
DOI  :  10.1186/1742-2094-10-4
 received in 2012-08-16, accepted in 2012-12-24,  发布年份 2013
PDF
【 摘 要 】

Background

Microglia cells continuously survey the healthy brain in a ramified morphology and, in response to injury, undergo progressive morphological and functional changes that encompass microglia activation. Although ideally positioned for immediate response to ischemic stroke (IS) and reperfusion, their progressive morphological transformation into activated cells has not been quantified. In addition, it is not well understood if diverse microglia morphologies correlate to diverse microglia functions. As such, the dichotomous nature of these cells continues to confound our understanding of microglia-mediated injury after IS and reperfusion. The purpose of this study was to quantitatively characterize the spatiotemporal pattern of microglia morphology during the evolution of cerebral injury after IS and reperfusion.

Methods

Male C57Bl/6 mice were subjected to focal cerebral ischemia and periods of reperfusion (0, 8 and 24 h). The microglia process length/cell and number of endpoints/cell was quantified from immunofluorescent confocal images of brain regions using a skeleton analysis method developed for this study. Live cell morphology and process activity were measured from movies acquired in acute brain slices from GFP-CX3CR1 transgenic mice after IS and 24-h reperfusion. Regional CD11b and iNOS expressions were measured from confocal images and Western blot, respectively, to assess microglia proinflammatory function.

Results

Quantitative analysis reveals a significant spatiotemporal relationship between microglia morphology and evolving cerebral injury in the ipsilateral hemisphere after IS and reperfusion. Microglia were both hyper- and de-ramified in striatal and cortical brain regions (respectively) after 60 min of focal cerebral ischemia. However, a de-ramified morphology was prominent when ischemia was coupled to reperfusion. Live microglia were de-ramified, and, in addition, process activity was severely blunted proximal to the necrotic core after IS and 24 h of reperfusion. CD11b expression, but not iNOS expression, was increased in regions of hyper- and de-ramified microglia during the course of ischemic stroke and 24 h of reperfusion.

Conclusions

Our findings illustrate that microglia activation after stroke includes both increased and decreased cell ramification. Importantly, quantitative analyses of microglial morphology and activity are feasible and, in future studies, would assist in the comprehensive identification and stratification of their dichotomous contribution toward cerebral injury and recovery during IS and reperfusion.

【 授权许可】

   
2013 Morrison and Filosa; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150410093352945.pdf 3544KB PDF download
Figure 10. 237KB Image download
Figure 9. 206KB Image download
Figure 8. 203KB Image download
Figure 7. 87KB Image download
Figure 6. 95KB Image download
Figure 5. 32KB Image download
Figure 4. 240KB Image download
Figure 3. 182KB Image download
Figure 2. 191KB Image download
Figure 1. 123KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, et al.: Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation 2012, 125:e2-e220.
  • [2]Moskowitz MA, Lo EH, Iadecola C: The science of stroke: mechanisms in search of treatments. Neuron 2010, 67:181-198.
  • [3]Sandoval KE, Witt KA: Blood–brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 2008, 32:200-219.
  • [4]Lambertsen KL, Biber K, Finsen B: Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab 2012, 1:1-22.
  • [5]Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E, Magnus T: Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 2009, 40:1849-1857.
  • [6]Ritter LS, Orozco JA, Coull BM, McDonagh PF, Rosenblum WI: Leukocyte accumulation and hemodynamic changes in the cerebral microcirculation during early reperfusion after stroke. Stroke 2000, 31:1153-1161.
  • [7]Perry VH, Nicoll JA, Holmes C: Microglia in neurodegenerative disease. Nat Rev Neurol 2010, 6:193-201.
  • [8]Wang Q, Tang XN, Yenari MA: The inflammatory response in stroke. J Neuroimmunol 2007, 184:53-68.
  • [9]Frank MM, Fries LF: The role of complement in inflammation and phagocytosis. Immunol Today 1991, 12:322-326.
  • [10]Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308:1314-1318.
  • [11]Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB: ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005, 8:752-758.
  • [12]Lawson LJ, Perry VH, Dri P, Gordon S: Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990, 39:151-170.
  • [13]Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A: The Role of Microglia in the Healthy Brain. J Neurosci 2011, 31:16064-16069.
  • [14]Orr AG, Orr AL, Li XJ, Gross RE, Traynelis SF: Adenosine A(2A) receptor mediates microglial process retraction. Nat Neurosci 2009, 12:872-878.
  • [15]Stence N, Waite M, Dailey ME: Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 2001, 33:256-266.
  • [16]Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M, Fariss RN, Li W, Wong WT: Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One 2011, 6:e15973.
  • [17]Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev 2011, 91:461-553.
  • [18]Perego C, Fumagalli S, De Simoni MG: Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation 2011, 8:174. BioMed Central Full Text
  • [19]Gyoneva S, Orr AG, Traynelis SF: Differential regulation of microglial motility by ATP/ADP and adenosine. Parkinsonism Relat Disord 2009, 15s3:S195-S199.
  • [20]Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J: Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 2009, 29:3974-3980.
  • [21]Tremblay ME, Lowery RL, Majewska AK: Microglial interactions with synapses are modulated by visual experience. PLoS Biol 2010, 8:e1000527.
  • [22]Morrison H, McKee D, Ritter L: Systemic neutrophil activation in a mouse model of ischemic stroke and reperfusion. Biol ResNurs 2011, 13:154-163.
  • [23]Bahmani P, Schellenberger E, Klohs J, Steinbrink J, Cordell R, Zille M, Muller J, Harhausen D, Hofstra L, Reutelingsperger C, et al.: Visualization of cell death in mice with focal cerebral ischemia using fluorescent annexin A5, propidium iodide, and TUNEL staining. J Cereb Blood Flow Metab 2011, 31:1311-1320.
  • [24]Reeves AM, Shigetomi E, Khakh BS: Bulk loading of calcium indicator dyes to study astrocyte physiology: key limitations and improvements using morphological maps. J Neurosci 2011, 31:9353-9358.
  • [25]Schoenen J: The dendritic organization of the human spinal cord: the dorsal horn. Neuroscience 1982, 7:2057-2087.
  • [26]Liu F, Schafer DP, McCullough LD: TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J Neurosci Methods 2009, 179:1-8.
  • [27]Terpolilli NA, Moskowitz MA, Plesnila N: Nitric oxide: considerations for the treatment of ischemic stroke. In J Cereb Blood Flow Metab 2012, 32:1332-1346.
  • [28]Sehara Y, Hayashi T, Deguchi K, Nagotani S, Zhang H, Shoji M, Abe K: Distribution of inducible nitric oxide synthase and cell proliferation in rat brain after transient middle cerebral artery occlusion. In Brain Res 2006, 1093:190-197.
  • [29]Loane DJ, Byrnes KR: Role of microglia in neurotrauma. In Neurotherapeutics 2010, 7:366-377.
  • [30]Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D: The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 2006, 9:1512-1519.
  • [31]Kurpius D, Nolley EP, Dailey ME: Purines induce directed migration and rapid homing of microglia to injured pyramidal neurons in developing hippocampus. Glia 2007, 55:873-884.
  • [32]del Zoppo GJ, Schmid-Schonbein GW, Mori E, Copeland BR, Chang CM: Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 1991, 22:1276-1283.
  • [33]del Zoppo GJ, Sharp FR, Heiss WD, Albers GW: Heterogeneity in the penumbra. J Cereb Blood Flow Metab 2011, 31:1836-1851.
  • [34]Masuda T, Croom D, Hida H, Kirov SA: Capillary blood flow around microglial somata determines dynamics of microglial processes in ischemic conditions. Glia 2011, 59:1744-1753.
  • [35]Marcoux FW, Morawetz RB, Crowell RM, DeGirolami U, Halsey JH Jr: Differential regional vulnerability in transient focal cerebral ischemia. Stroke 1982, 13:339-346.
  • [36]Pantoni L, Garcia JH, Gutierrez JA: Cerebral white matter is highly vulnerable to ischemia. Stroke 1996, 27:1641-1646.
  • [37]Takano T, Oberheim N, Cotrina ML, Nedergaard M: Astrocytes and ischemic injury. Stroke 2009, 40:S8-S12.
  • [38]Nagaraja TN, Keenan KA, Fenstermacher JD, Knight RA: Acute leakage patterns of fluorescent plasma flow markers after transient focal cerebral ischemia suggest large openings in blood–brain barrier. Microcirculation 2008, 15:1-14.
  • [39]Wiart M, Davoust N, Pialat JB, Desestret V, Moucharrafie S, Cho TH, Mutin M, Langlois JB, Beuf O, Honnorat J, et al.: MRI monitoring of neuroinflammation in mouse focal ischemia. Stroke 2007, 38:131-137.
  • [40]Dhawan J, Benveniste H, Nawrocky M, Smith SD, Biegon A: Transient focal ischemia results in persistent and widespread neuroinflammation and loss of glutamate NMDA receptors. Neuroimage 2010, 51:599-605.
  • [41]Amantea D, Bagetta G, Tassorelli C, Mercuri NB, Corasaniti MT: Identification of distinct cellular pools of interleukin-1beta during the evolution of the neuroinflammatory response induced by transient middle cerebral artery occlusion in the brain of rat. Brain Res 2010, 1313:259-269.
  • [42]Clausen BH, Lambertsen KL, Babcock AA, Holm TH, Dagnaes-Hansen F, Finsen B: Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation 2008, 5:46. BioMed Central Full Text
  • [43]del Zoppo G, Ginis I, Hallenbeck JM, Iadecola C, Wang X, Feuerstein GZ: Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain pathology 2000, 10:95.
  • [44]Shi Y, Chanana V, Watters JJ, Ferrazzano P, Sun D: Role of sodium/hydrogen exchanger isoform 1 in microglial activation and proinflammatory responses in ischemic brains. J Neurochem 2011, 119:124-135.
  • [45]Thored P, Heldmann U, Gomes-Leal W, Gisler R, Darsalia V, Taneera J, Nygren JM, Jacobsen SE, Ekdahl CT, Kokaia Z, Lindvall O: Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia 2009, 57:835-849.
  • [46]Morioka T, Kalehua AN, Streit WJ: Characterization of microglial reaction after middle cerebral artery occlusion in rat brain. J Comp Neurol 1993, 327:123-132.
  • [47]Zarruk JG, Fernandez-Lopez D, Garcia-Yebenes I, Garcia-Gutierrez MS, Vivancos J, Nombela F, Torres M, Burguete MC, Manzanares J, Lizasoain I, Moro MA: Cannabinoid type 2 receptor activation downregulates stroke-induced classic and alternative brain macrophage/microglial activation concomitant to neuroprotection. Stroke 2012, 43:211-219.
  文献评价指标  
  下载次数:0次 浏览次数:3次