期刊论文详细信息
EPMA Journal
The role of beneficial bacteria wall elasticity in regulating innate immune response
Mykola Ya Spivak6  Rostyslav V. Bubnov5  Diana DiGioia2  Bruno Biavati2  Nadiya V. Boyko1  Yulia O. Melnichenko1  Olga M. Demchenko6  Petro M. Lytvyn3  Lidia P. Babenko1  Liubov M. Sichel4  Liudmyla M. Lazarenko1  Viktoria V. Мokrozub1 
[1] Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154, Zabolotny st., Kyiv D03680, Ukraine;Dipartimento di Scienze Agrarie, Alma Mater Studiorum—Bologna University, Bologna 40127, Italy;Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41, pr. Nauky, Kyiv 03028, Ukraine;Pure Research Products, LLC, 6107, Chelsea Manor Court, Boulder 80301, CO, USA;Clinical Hospital “Pheophania” of State Affairs Department, Zabolotny str., 21, Kyiv 03680, Ukraine;LCL «Diaprof», Svitlycky Str., 35, Kyiv 04123, Ukraine
关键词: Pattern-recognition receptors;    Fecal microbiota transplantation;    Nutrition;    Healthy diet;    Dietary biomarkers;    Immune disorders;    Cancer;    Microbiome;    Gut–brain axis;    Atomic force microscopy;    Cell wall elasticity;    Macrophages;    nitrosative stress;    Oxidative;    Cytokines;    Bifidobacterium;    Lactobacillus;    Gut microbiota;    and personalized medicine;    preventive;    Predictive;   
Others  :  1219083
DOI  :  10.1186/s13167-015-0035-1
 received in 2014-12-19, accepted in 2015-05-22,  发布年份 2015
PDF
【 摘 要 】

Background

Probiotics have great potential to contribute to development of healthy dietary regimes, preventive care, and an integrated approach to immunity-related disease management. The bacterial wall is a dynamic entity, depending on many components and playing an essential role in modulating immune response. The impact of cell wall elasticity on the beneficial effects of probiotic strains has not been sufficiently studied.

The aim was to investigate the effect of lactic acid bacteria (LAB) and bifidobacteria strains on phagocytic system cells (macrophages) as related to bacterial wall elasticity, estimated using atomic force microscopy (AFM).

Methods

We conducted studies on Balb/c line mice 18–20 g in weight using lyophilized strains of LAB—Lactobacillus acidophilus IMV B-7279, Lactobacillus casei IMV B-7280, Lactobacillus delbrueckii subsp. bulgaricus IMV B-7281, and bifidobacteria—Bifidobacterium animalis VKL and Bifidobacterium animalis VKB. We cultivated the macrophages obtained from the peritoneal cavity of mice individually with the strains of LAB and bifidobacteria and evaluated their effect on macrophages, oxygen-dependent bactericidal activity, nitric oxide production, and immunoregulatory cytokines. We used AFM scanning to estimate bacterial cell wall elasticity.

Results

All strains had a stimulating effect on the functional activity of macrophages and ability to produce NO/NO 2in vitro. Lactobacilli strains increased the production of IL-12 and IFN-γ in vitro. The AFM demonstrated different cell wall elasticity levels in various strains of LAB and bifidobacteria. The rigidity of the cell walls among lactobacilli was distributed as follows: Lactobacillus acidophilus IMV B-7279 > Lactobacillus casei IMV B-7280 > Lactobacillus delbrueckii subsp. bulgaricus IMV B-7281; among the strains of bifidobacteria: B. animalis VKB > B. animalis VKL. Probiotic strain survival in the macrophages depended on the bacterial cell wall elasticity and on the time of their joint cultivation.

Conclusion

LAB and bifidobacteria strains stimulate immune-modulatory cytokines and active oxygen and nitrogen oxide compound production in macrophages. Strains with a more elastic cell wall according to AFM data demonstrated higher resistance to intracellular digestion in macrophages and higher level of their activation.

AFM might be considered as a fast and accurate method to assess parameters of probiotic strain cell wall to predict their immune-modulatory properties.

【 授权许可】

   
2015 Mokrozub et al.

【 预 览 】
附件列表
Files Size Format View
20150715034215508.pdf 1191KB PDF download
Fig. 2. 82KB Image download
Fig. 1. 88KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

【 参考文献 】
  • [1]Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat Immunol. 2011; 12(1):5-9.
  • [2]Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989; 299:1259-60.
  • [3]Toh ZQ, Anzela A, Tang ML, Licciardi PV. Probiotic therapy as a novel approach for allergic disease. Front Pharmacol. 2012; 3:171.
  • [4]Wills-Karp M, Santeliz J, Karp CL. The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat Rev Immunol. 2001; 1:69-75.
  • [5]Nemcová R. Criteria for selection of lactobacilli for probiotic use. Vet Med (Praha). 1997; 42(1):19-27.
  • [6]Polak-Berecka M, Waśko A, Paduch R, Skrzypek T, Sroka-Bartnicka A. The effect of cell surface components on adhesion ability of Lactobacillus rhamnosus. Antonie Van Leeuwenhoek. 2014; 106(4):751-62.
  • [7]Zeuthen LH, Fink LN, Frøkiaer H. Toll-like receptor 2 and nucleotide-binding oligomerization domain-2 play divergent roles in the recognition of gut-derived lactobacilli and bifidobacteria in dendritic cells. Immunology. 2008; 124(4):489-502.
  • [8]Bron PA, van Baarlen P, Kleerebezem M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol. 2012; 10(1):66-78.
  • [9]Sánchez B, Schmitter JM, Urdaci MC. Identification of novel proteins secreted by Lactobacillus rhamnosus GG grown in de Mann-Rogosa-Sharpe broth. Lett Appl Microbiol. 2009; 48(5):618-22.
  • [10]Sánchez B, Schmitter JM, Urdaci MC. Identification of novel proteins secreted by Lactobacillus plantarum that bind to mucin and fibronectin. J Mol Microbiol Biotechnol. 2009; 17(3):158-62.
  • [11]Dijkstra AJ, Keck W. Peptidoglycan as a barrier to transenvelope transport. J Bacteriol. 1996; 178(19):5555-62.
  • [12]Deepika G, Green RJ, Frazier RA, Charalampopoulos D. Effect of growth time on the surface and adhesion properties of Lactobacillus rhamnosus GG. J Appl Microbiol. 2009; 107(4):1230-40.
  • [13]Deepika G, Karunakaran E, Hurley CR, Biggs CA, Charalampopoulos D. Influence of fermentation conditions on the surface properties and adhesion of Lactobacillus rhamnosus GG. Microb Cell Fact. 2012; 11:116. BioMed Central Full Text
  • [14]Dziarski R, Gupta D. Staphylococcus aureus peptidoglycan is a Toll-like receptor 2 activator: a reevaluation. Infect Immun. 2005; 73:5212-6.
  • [15]Travassos LH, Girardin SE, Philpott DJ, Blanot D, Nahori MA, Werts C et al.. Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep. 2004; 5:1000-6.
  • [16]Volz T, Nega M, Buschmann J, Kaesler S, Guenova E, Peschel A et al.. Natural Staphylococcus aureus-derived peptidoglycan fragments activate NOD2 and act as potent co-stimulators of the innate immune system exclusively in the presence of TLR signals. FASEB J. 2010; 24:4089-102.
  • [17]Asong J, Wolfert MA, Maiti KK, Miller D, Boons GJ. Binding and cellular activation studies reveal that Toll-like receptor 2 can differentially recognize peptidoglycan from Gram-positive and Gram-negative bacteria. J Biol Chem. 2009; 284:8643-53.
  • [18]Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003; 21:335-76.
  • [19]Maliničová L, Piknová M, Pristaš P, Javorský P. Peptidoglycan hydrolases as novel tool for anti-enterococcal therapy. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. The Formatex Microbiology Book Series. 2010, Volume, 1. Access mode: http://www.formatex.info/microbiology2/463-472.pdf Accessed 5 May 2015.
  • [20]Ruas-Madiedo P, Gueimonde M, Margolles A, delos Reyes-Gavilán CG, Salminen SJ. Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus. Food Prot. 2006; 69(8):2011-5.
  • [21]Sengupta R, Altermann E, Anderson RC, McNabb WC, Moughan PJ, Roy NC. The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediators Inflamm. 2013; 2013:237921.
  • [22]Mohamadzadeh M, Pfeiler EA, Brown JB, Zadeh M, Gramarossa M, Managlia E et al.. Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci U S A. 2011; 108 Suppl 1:4623-30.
  • [23]Delcour J, Ferain T, Deghorain M, Palumbo E, Hols P. The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie Van Leeuwenhoek. 1999; 76(1–4):159-84.
  • [24]Wells JM. mmunomodulatory mechanisms of lactobacilli. Microb Cell Fact. 2011; 10 Suppl 1:S17. BioMed Central Full Text
  • [25]Chapot-Chartier MP, Kulakauskas S. Cell wall structure and function in lactic acid bacteria. Microb Cell Fact. 2014; 13 Suppl 1:S9. BioMed Central Full Text
  • [26]Derkx PM, Janzen T, Sørensen KI, Christensen JE, Stuer-Lauridsen B, Johansen E. The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNAtechnology. Microb Cell Fact. 2014; 13 Suppl 1:S5. BioMed Central Full Text
  • [27]de Goffau MC, Luopajärvi K, Knip M, Ilonen J, Ruohtula T, Härkönen T et al.. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes. 2013; 62(4):1238-44.
  • [28]West CE, Renz H, Jenmalm MC, Kozyrskyj AL, Allen KJ, Vuillermin P et al.. The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gutmicrobiota therapies. J Allergy Clin Immunol. 2015; 135(1):3-13.
  • [29]Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen RJ et al.. The extracellular biology of the lactobacilli. FEMS Microbiol Rev. 2010; 34(2):199-230.
  • [30]Grangette C, Nutten S, Palumbo E, Morath S, Hermann C, Dewulf J et al.. Enhanced anti-inflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoicacids. Proc Natl Acad Sci U S A. 2005; 102(29):10321-6.
  • [31]Wyckoff TJ, Taylor JA, Salama NR. Beyond growth: novel functions for bacterial cell wall hydrolases. Trends Microbiol. 2012; 20(11):540-7.
  • [32]MiragliadelGiudice M, De Luca MG. The role of probiotics in the clinical management of food allergy and atopic dermatitis. J Clin Gastroenterol. 2004; 38(6 Suppl):S84-5.
  • [33]Pinto MV, Rodriguez Gómez M, Seifert S, Watzl B, Holzapfe WH, Franz C. Lactobacilli stimulate the innate immune response and modulate the TLR expression of HT29 intestinal epithelial cells in vitro. Int J Food Microbiol. 2009; 133(1–2):86-93.
  • [34]Tymoshok NO, Lazarenko LM, Bubnov RV, Shynkarenko LN, Babenko LP, Mokrozub VV, et al. New aspects the regulation of immune response through balance Th1/Th2 cytokines. EPMA J. 2014;5 Suppl 1:A134.
  • [35]Dabbagh K, Lewis DB. Toll-like receptors and T-helper-1/T-helper-2 responses. Curr Opin Infect Dis. 2003; 16(3):199-204.
  • [36]Matsuguchi T, Takagi A, Matsuzaki T, Nagaoka M, Ishikawa K, Yokokura T et al.. Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha- inducing activities in macrophages through Toll-like receptor 2. Clin Diagn Lab Immunol. 2003; 10(2):259-66.
  • [37]Vinderola G, Matar C, Perdigon G. Role of intestinal epithelial cells in immune effects mediated by gram-positive probiotic bacteria: involvement of Toll-like receptors. Clin Diagn Lab Immunol. 2005; 12(9):1075-84.
  • [38]Shida K, Kiyoshima-Shibata J, Nagaoka M, Watanabe K, Nanno M. Induction of interleukin-12 by Lactobacillus strains having a rigid cell wall resistant to intracellular. digestion. J Dairy Sci. 2006; 89(9):3306-17.
  • [39]Yasuda E, Serata M, Sako T. Suppressive effect on activation of macrophages by Lactobacillus casei strain Shirota genes determining the synthesis of cell wall-associated polysaccharides. Appl Environ Microbiol. 2008; 74(15):4746-55.
  • [40]Butt HJ, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep. 2005; 59(1):1-152.
  • [41]Schaer-Zammaretti P, Ubbink J. Imaging of lactic acid bacteria with AFM—elasticity and adhesion maps and their relationship to biological and structural data. Ultramicroscopy. 2003; 97(1–4):199-208.
  • [42]Reznikov O. The problem of ethics in carrying out of experimental medical and biological research on animals. Bulletin of the National Academy of Sciences of Ukraine. 2001; 1:5-7.
  • [43]Alonso JL, Goldmann WH. Feeling the forces: atomic force microscopy in cell biology. Life Sci. 2003; 72(23):2553-60.
  • [44]Metelska VA, Tumanova NG. Screening-method of determining the level of nitric oxide metabolites in blood serum. Clinical and laboratory diagnostics. 2005; 6:15-8.
  • [45]Grachev MP. Definition of bactericidal power of alveolar macrophages with NBT-test. JMEI. 1984; 2:87-8.
  • [46]Vinckier A, Semenza G. Measuring elasticity of biological materials by atomic force microscopy. FEBS Lett. 1998; 430(1–2):12-6.
  • [47]Babenko LP, Lazarenko LM, Shynkarenko LM, Mokrozub VV, Pidgorskyi VS, Spivak MJ. The effect of Lacto- and Bifidobacteria in monoculture on the vaginal microflora in norm and in cases of intravaginal staphylococcosis. Mikrobiol Z. 2013; 75(3):46-55.
  • [48]Popova P, Guencheva G, Davidkova G, Bogdanov A, Pacelli E, Opalchenova G et al.. Stimulating effect of DEODAN (an oral preparation from Lactobacillus bulgaricus “LB 51”) on monocites/macrophages and host resistance to experimental infections. Int J Immunopharmacol. 1993; 15(1):25-37.
  • [49]Perdigon G, de Macias ME, Alvarez S, Oliver G, de Ruiz Holgado AA. Effect of perorally administered lactobacilli on macrophage activation in mice. Infect Immun. 1986; 53(2):404-10.
  • [50]Kim DW, Cho SB, Yun CH, Jeong HY, Chung WT, Choi CW et al.. Induction of cytokines and nitric oxide in murine macrophages stimulated with enzymatically digested lactobacillus strains. J Microbiol. 2007; 45(5):373-8.
  • [51]Schär-Zammaretti P, Ubbink J. The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations. Biophys J. 2003; 85(6):4076-92.
  • [52]Ruas-Madiedo P, Hugenholtz J, Zoon P. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci. 2003; 86(2):407-23.
  • [53]Spivak M, Pidhorskyy V, Shynkarenko, L. Gorchakov V, Starovoitova S, Lazarenko L, Timoshok N: Lactobacillus casei IMV B-7280 strain—inductor of the «late» interferon and macrophages activator. Patent Ukraine N 93133. IPC (2011.01) C12N 1/20 C12R 1/23 (2006.01) A61K 35/74 (2006.01), issued 10.01.2011, (Bull. N 1).
  • [54]Spivak M, Pidhorskyy V, Shynkarenko, L. Gorchakov V, Starovoitova S, Lazarenko L, Timoshok N: Lactobacillus acidophilus ІМV В-7279 strain—inductor of the I type endogenous interferon Patent Ukraine N 93132. IPC (2011.01) C12N 1/20 C12R 1/23 (2006.01) A61K 35/74 (2006.01), issued 10.01.2011, (Bull. N 1).
  • [55]Liu CF, Tseng KC, Chiang SS, Lee BH, Hsu WH, Pan TM. Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J Sci Food Agric. 2011; 91(12):2284-91.
  • [56]Tejada-Simon MV, Pestka JJ. Proinflammatory cytokine and nitric oxide induction in murine macrophages by cell wall and cytoplasmic extracts of lactic acid bacteria. J Food Prot. 1999; 62(12):1435-44.
  • [57]Cross ML, Ganner A, Teilab D, Fray LM. Patterns of cytokine induction by gram- positive and gram-negative probiotic bacteria. FEMS Immunol Med Microbiol. 2004; 42(2):173-80.
  • [58]Murata K, Tomosada Y, Villena J, Chiba E, Shimazu T, Aso H et al.. Bifidobacterium breve MCC-117 induces tolerance in porcine intestinal epithelial cells: study of the mechanisms involved in the immunoregulatory effect. Biosci Microbiota Food Health. 2014; 33(1):1-10.
  • [59]You J, Dong H, Mann ER, Knight SC, Yaqoob P. Probiotic modulation of dendritic cell function is influenced by ageing. Immunobiology. 2014; 219(2):138-48.
  • [60]Adams CA. The probiotic paradox: live and dead cells are biological response modifiers. Nutr Res Rev. 2010; 23(1):37-46.
  • [61]Reid G. The importance of guidelines in the development and application of probiotics. Curr Pharm Des. 2005; 11:11-6.
  • [62]Marzorati M, Possemiers S, Verstraete W. The use of the SHIME-related technology platform to assess the efficacy of pre- and probiotics. Agro Food Ind Hi-Tech. 2009; 20:S50-3.
  • [63]Obataya I, Nakamura C, Han S, Nakamura N, Miyake J. Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. Nano Lett. 2005; 5(1):27-30.
  • [64]Golubnitschaja O, Costigliola V. EPMA. EPMA summit 2014 under the auspices of the presidency of Italy in the EU: professional statements. EPMA J. 2015; 6:4. BioMed Central Full Text
  • [65]Zijlstra S, Gunawan J, Freytag C, Burchert W. Synthesis and evaluation of fluorine-18 labelled compounds for imaging of bacterial infections with pet. Appl Radiat Isot. 2006; 64(7):802-7.
  • [66]Wang H, Machtaler S, Bettinger T, Lutz AM, Luong R, Bussat P et al.. Molecular imaging of inflammation in inflammatory bowel disease with a clinically translatable dual-selectin-targeted US contrast agent: comparison with FDG PET/CT in a mouse model. Radiology. 2013; 267(3):818-29.
  • [67]Karunatilaka KS, Cameron EA, Martens EC, Koropatkin NM, Biteen JS. Superresolution imaging captures carbohydrate utilization dynamics in human gut symbionts. MBio. 2014; 5(6): Article ID e02172
  • [68]Blow N. In vivo molecular imaging: the inside job. Nat Methods. 2009; 6(6):465-9.
  • [69]Honka H, Mäkinen J, Hannukainen JC, Tarkia M, Oikonen V, Teräs M et al.. Validation of [18F] fluorodeoxyglucose and positron emission tomography (PET) for the measurement of intestinal metabolism in pigs, and evidence of intestinal insulin resistance in patients with morbid obesity. Diabetologia. 2013; 56(4):893-900.
  • [70]Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NM, Magness S et al.. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One. 2010; 5(8):e12191.
  文献评价指标  
  下载次数:26次 浏览次数:26次