期刊论文详细信息
Journal of Neuroinflammation
A role for DNA-dependent activator of interferon regulatory factor in the recognition of herpes simplex virus type 1 by glial cells
Ian Marriott1  Megan J Moerdyk-Schauwecker1  Vinita S Chauhan1  Samantha R Furr1 
[1] Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
关键词: herpes simplex virus-1;    encephalitis;    innate immunity;    neuroinflammation;    astrocytes;    microglia;    DNA-dependent activator of IFN regulatory factor;   
Others  :  1213190
DOI  :  10.1186/1742-2094-8-99
 received in 2011-04-14, accepted in 2011-08-12,  发布年份 2011
PDF
【 摘 要 】

Background

The rapid onset of potentially lethal neuroinflammation is a defining feature of viral encephalitis. Microglia and astrocytes are likely to play a significant role in viral encephalitis pathophysiology as they are ideally positioned to respond to invading central nervous system (CNS) pathogens by producing key inflammatory mediators. Recently, DNA-dependent activator of IFN regulatory factor (DAI) has been reported to function as an intracellular sensor for DNA viruses. To date, the expression and functional role of DAI in the inflammatory responses of resident CNS cells to neurotropic DNA viruses has not been reported.

Methods

Expression of DAI and its downstream effector molecules was determined in C57BL/6-derived microglia and astrocytes, either at rest or following exposure to herpes simplex virus type 1 (HSV-1) and/or murine gammaherpesvirus-68 (MHV-68), by immunoblot analysis. In addition, such expression was studied in ex vivo microglia/macrophages and astrocytes from uninfected animals or mice infected with HSV-1. Inflammatory cytokine production by glial cultures following transfection with a DAI specific ligand (B-DNA), or following HSV-1 challenge in the absence or presence of siRNA directed against DAI, was assessed by specific capture ELISA. The production of soluble neurotoxic mediators by HSV-1 infected glia following DAI knockdown was assessed by analysis of the susceptibility of neuron-like cells to conditioned glial media.

Results

We show that isolated microglia and astrocytes constitutively express DAI and its effector molecules, and show that such expression is upregulated following DNA virus challenge. We demonstrate that these resident CNS cells express DAI in situ, and show that its expression is similarly elevated in a murine model of HSV-1 encephalitis. Importantly, we show B-DNA transfection can elicit inflammatory cytokine production by isolated glial cells and DAI knockdown can significantly reduce microglial and astrocyte responses to HSV-1. Finally, we demonstrate that HSV-1 challenged microglia and astrocytes release neurotoxic mediators and show that such production is significantly attenuated following DAI knockdown.

Conclusions

The functional expression of DAI by microglia and astrocytes may represent an important innate immune mechanism underlying the rapid and potentially lethal inflammation associated with neurotropic DNA virus infection.

【 授权许可】

   
2011 Furr et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150614120356620.pdf 2308KB PDF download
Figure 7. 89KB Image download
Figure 6. 76KB Image download
Figure 5. 39KB Image download
Figure 4. 41KB Image download
Figure 5. 100KB Image download
Figure 2. 43KB Image download
Figure 1. 63KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 5.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Xu F, Sternberg MR, Kottiri BJ, McQuillan GM, Lee FK, Nahmias AJ, Berman SM, Markowitz LE: Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. JAMA 2006, 296:964-973.
  • [2]Baringer JR: Herpes Simplex Infections of the Nervous System. Neurol Clin 2008, 26:657-674.
  • [3]Nakajima H, Kobayashi M, Pollard RB, Suzuki F: Monocyte chemoattractant protein-1 enhances HSV-induced encephalomyelitis by stimulating Th2 responses. J Leukoc Biol 2001, 70:374-380.
  • [4]Rosler A, Pohl M, Braune HJ, Oertel WH, Gemsa D, Sprenger H: Time course of chemokines in the cerebrospinal fluid and serum during herpes simplex type 1 encephalitis. J Neurol Sci 1998, 157:82-89.
  • [5]Wildemann B, Ehrhart K, Storch-Hagenlocher B, Meyding-Lamade U, Steinvorth S, Hacke W, Haas J: Quantitation of herpes simplex virus type 1 DNA in cells of cerebrospinal fluid of patients with herpes simplex virus encephalitis. Neurology 1997, 48:1341-1346.
  • [6]Trifilo MJ, Lane TE: Adenovirus-mediated expression of CXCL10 in the central nervous system results in T-cell recruitment and limited neuropathology. J Neurovirol 2003, 9:315-324.
  • [7]Conrady CD, Drevets DA, Carr DJ: Herpes simplex type I (HSV-1) infection of the nervous system: is an immune response a good thing? J Neuroimmunol 2010, 220:1-9.
  • [8]Aravalli RN, Hu S, Rowen TN, Gekker G, Lokensgard JR: Differential apoptotic signaling in primary glial cells infected with herpes simplex virus 1. J Neurovirol 2006, 12:501-510.
  • [9]Konat GW, Kielian T, Marriott I: The role of Toll-like receptors in CNS response to microbial challenge. J Neurochem 2006, 99:1-12.
  • [10]Carpentier PA, Duncan DS, Miller SD: Glial toll-like receptor signaling in central nervous system infection and autoimmunity. Brain Behav Immun 2008, 22:140-147.
  • [11]Falsig J, van Beek J, Hermann C, Leist M: Molecular basis for detection of invading pathogens in the brain. J Neurosci Res 2008, 86:1434-1447.
  • [12]Lokensgard JR, Hu S, Sheng W, vanOijen M, Cox D, Cheeran MC, Peterson PK: Robust expression of TNF-alpha, IL-1beta, RANTES, and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus. J Neurovirol 2001, 7:208-219.
  • [13]Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A: Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 2003, 198:513-520.
  • [14]Kurt-Jones E, Mandell L, Cerny A, Chan M, Zhou S, Reed G, Bronson R, Arnold MM, Knipe DM, Finberg RW: Neonatal herpes simplex infection: Herpes simplex virus I interaction with TLR2 contributes to lethal encephalitis. Proc Natl Acad Sci 2004, 101:1315-1320.
  • [15]Fu Y, Comella N, Tognazzi K, Brown LF, Dvorak HF, Kocher O: Cloning of DLM-1, a novel gene that is up-regulated in activated macrophages, using RNA differential display. Gene 1999, 240:157-163.
  • [16]Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F: A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol 2006, 7:40-48.
  • [17]Takaoka A, Wang Z, Choi M, Yanai H, Negishi H, Ban T, Lu Y, Miyagishi M, Kodama T, Hondra K, Ohba Y, Taniguchi T: DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 2007, 448:501-506.
  • [18]Wang Z, Choi MK, Ban T, Yanai H, Negishi H, Lu Y, Tamura T, Takaoka A, Nishikura K, Taniguchi T: Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc Natl Acad Sci 2008, 105:5477-5482.
  • [19]Stetson DB, Medzhitov R: Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 2006, 24:93-103.
  • [20]Rasley A, Anguita J, Marriott I: Borrelia burgdorferi induces inflammatory mediator production by murine microglia. J Neuroimmunol 2002, 130:22-31.
  • [21]Bowman CC, Rasley A, Tranguch SL, Marriott I: Cultured astrocytes express toll-like receptors for bacterial products. Glia 2003, 43:281-291.
  • [22]Rasley A, Bost KL, Marriott I: Murine gammaherpesvirus-68 elicits robust levels of interleukin-12 p40, but not interleukin-12 p70 production, by murine microglia and astrocytes. J Neurovirol 2004, 10:171-180.
  • [23]Furr SR, Chauhan VS, Sterka D Jr, Grdzelishvili VZ, Marriott I: Characterization of retinoic acid-inducible gene-I expression in primary murine glia following exposure to vesicular stomatitis virus. J Neurovirol 2008, 7:1-11.
  • [24]Furr SR, Moedyck-Schauwecker M, Grdzelishvili VZ, Marriott I: RIG-I mediates nonsegmented single-stranded RNA virus-induced inflammatory immune responses of primary human astrocytes. Glia 2010, 58:1620-1629.
  • [25]Gasper-Smith N, Marriott I, Bost KL: Murine gamma-herpesvirus 68 limits naturally occurring CD4+CD25+T regulatory cell activity following infection. J Immunol 2006, 177:4670-4678.
  • [26]Campanella M, Sciorati C, Tarozzo G, Beltramo M: Flow cytometric analysis of inflammatory cells in ischemic rat brain. Stroke 2003, 33:586-592.
  • [27]Chauhan VS, Sterka DG Jr, Gray DL, Bost KL, Marriott I: Neurogenic exacerbation of microglial and astrocyte responses to Neisseria meningitidis and Borrelia burgdorferi. J Immunol 2008, 180:8241-8249.
  • [28]Flano E, Woodland DL, Blackman MA: A mouse model for infectious mononucleosis. Immunol Res 2002, 25:201-217.
  • [29]Rebsamen M, Heinz LX, Meylan E, Michallet MC, Schroder K, Hofmann K, Vazquez J, Benedict CA, Tschopp J: DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO 2009, 10:916-922.
  • [30]Ishikawa H, Barber GN: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008, 455:674-678. Erratum in: Nature, 2008 456:274
  • [31]Ishikawa H, Ma Z, Barber GN: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009, 461:788-792.
  • [32]Isaacson E, Glaser CA, Forghani B, Amad Z, Wallace M, Armstrong RW, Exner MM, Schmid S: Evidence of human herpesvirus 6 infection in 4 immunocompetent patients with encephalitis. Clin Infect Dis 2005, 40:890-893.
  • [33]Whitley RJ, Alford CA, Hirsch MS, Schooley RT, Luby JP, Aoki FY, Hanley D, Nahmias AJ, Soong SJ: Vidarabine versus acyclovir therapy in herpes simplex encephalitis. N Engl J Med 1986, 314:144-149.
  • [34]Kimberlin DW: Management of HSV encephalitis in adults and neonates: diagnosis, prognosis and treatment. Herpes 2007, 14:11-16.
  • [35]Raschilas F, Wolff M, Delatour F, Chaffaut C, De Broucker T, Chevret S, Lebon P, Canton P, Rozenberg F: Outcome of and prognostic factors for herpes simplex encephalitis in adult patients: results of a multicenter study. Clin Infect Dis 2002, 35:254-260.
  • [36]Hjalmarsson A, Blomqvist P, Sköldenberg B: Herpes simplex encephalitis in Sweden, 1990-2001: incidence, morbidity, and mortality. Clin Infect Dis 2007, 45:875-880.
  • [37]Hu S, Sheng W, vanOijen M, Cox D, Cheeran MC, Peterson PK: Robust expression of TNF-alpha, IL-1beta, RANTES, and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus. J Neurovirol 2001, 7:208-219.
  • [38]Marques CP, Hu S, Sheng W, Cheeran MC, Cox D, Lokensgard JR: Interleukin-10 attenuates production of HSV-induced inflammatory mediators by human microglia. Glia 2004, 47:358-366.
  • [39]Marques CP, Cheeran MC, Palmquist JM, Hu S, Urban SL, Lokensgard JR: Prolonged microglial cell activation and lymphocyte infiltration following experimental herpes encephalitis. J Immunol 2008, 181:6417-6426.
  • [40]Marques CP, Hu S, Sheng W, Lokensgard JR: Microglial cells initiate vigorous yet non-protective immune responses during HSV-1 brain infection. Virus Research 121:1-10.
  • [41]Mori I, Goshima F, Ito H, Koide N, Yoshida T, Yokochi T, Kimura Y, Nishiyama Y: The vomeronasal chemosensory system as a route of neuroinvasion by herpes simplex virus. Virology 2005, 334:51-58.
  • [42]Ikemoto K, Pollard R, Fukumoto T, Morimatsu M, Suzuki F: Small amounts of exogenous IL-4 increase the severity of encephalitis induced in mice by the intranasal infection of herpes simplex virus type 1. J Immunol 1995, 155:1326-1333.
  • [43]Esiri MM, Drummond CWE, Morris CS: Macrophages and microglia in HSV-1 infected mouse brain. J Neuroimmunol 1995, 62:201-205.
  • [44]Mansur DS, Kroon EG, Nogueira ML, Arantes RME, Rodrigues SCO, Akira S, Gazzinelli RT, Campos MA: Lethal encephalitis in myeloid differentiation factor 88-deficient mice infected with herpes simplex virus 1. Am J Pathol 2005, 166:1419-1426.
  • [45]Nair A, Hunzeker J, Bonneau RH: Modulation of microglia and CD8+ T cell activation during the development of stress-induced herpes simplex virus type-1 encephalitis. Brain Behav Immun 2007, 21:791-806.
  • [46]Beers DR, Henkel JS, Kesner RP, Stroop WG: Spatial recognition memory deficits without notable CNS pathology in rats following herpes simplex encephalitis. J Neurol Sci 1995, 131:119-127.
  • [47]Mariani MM, Kielian T: Microglia in infectious diseases of the central nervous system. J Neuroimmune Pharmacol 2009, 4:448-461.
  • [48]Dix RD, Hurst LI, Keane RW: Herpes simplex virus type 1 infection of mouse astrocytes treated with basic fibroblast growth factor. Journal of General Virology 1992, 73:1845-1848.
  • [49]Bsibsi M, Persoon-Deen C, Verwer RW, Meeuwsen S, Ravid R, Van Noort JM: Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia 2006, 53:688-695.
  • [50]Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP: TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 2005, 175:4320-4330.
  • [51]Kumar H, Kawai T, Akira S: Pathogen recognition by the innate immune system. Int Rev Immunol 2011, 30:16-34.
  • [52]Zhang SY, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, Segal D, Sancho-Shimizu V, Lorenzo L, Puel A, Picard C, Chapgier A, Plancoulaine S, Titeux M, Cognet C, von Bernuth H, Ku CL, Casrouge A, Zhang XX, Barreiro L, Leonard J, Hamilton C, Lebon P, Héron B, Vallée L, Quintana-Murci L, Hovnanian A, Rozenberg F, Vivier E, Geissmann F, Tardieu M, Abel L, Casanova JL: TLR3 deficiency in patients with herpes simplex encephalitis. Science 2007, 317:1522-1527.
  • [53]Wilkins C, Gale M Jr: Recognition of viruses by cytoplasmic sensors. Curr Opin Immunol 2010, 22:41-47.
  • [54]Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V: RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol 2009, 10:1065-1072.
  • [55]Melchjorsen J, Rintahaka J, Søby S, Horan KA, Poltajainen A, Østergaard L, Paludan SR, Matikainen S: Early innate recognition of herpes simplex virus in human primary macrophages is mediated via the MDA5/MAVS-dependent and MDA5/MAVS/RNA polymerase III-independent pathways. J Virol 2010, 84:11350-11358.
  文献评价指标  
  下载次数:33次 浏览次数:11次