期刊论文详细信息
Journal of Biomedical Science
Clues to γ-secretase, huntingtin and Hirano body normal function using the model organism Dictyostelium discoideum
Michael A Myre1 
[1] Molecular Neurogenetics Unit, Center for Human Genetic Research, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
关键词: Neurotransmitter homologues;    Hirano bodies;    γ-secretase;    Presenilin;    Huntingtin;    Neurodegeneration;    Model organism;    Dictyostelium discoideum;   
Others  :  825279
DOI  :  10.1186/1423-0127-19-41
 received in 2012-02-03, accepted in 2012-04-10,  发布年份 2012
PDF
【 摘 要 】

Many neurodegenerative disorders, although related by their destruction of brain function, display remarkable cellular and/or regional pathogenic specificity likely due to a deregulated functionality of the mutant protein. However, neurodegenerative disease genes, for example huntingtin (HTT), the ataxins, the presenilins (PSEN1/PSEN2) are not simply localized to neurons but are ubiquitously expressed throughout peripheral tissues; it is therefore paramount to properly understand the earliest precipitating events leading to neuronal pathogenesis to develop effective long-term therapies. This means, in no unequivocal terms, it is crucial to understand the gene's normal function. Unfortunately, many genes are often essential for embryogenesis which precludes their study in whole organisms. This is true for HTT, the β-amyloid precursor protein (APP) and presenilins, responsible for early onset Alzheimer's disease (AD). To better understand neurological disease in humans, many lower and higher eukaryotic models have been established. So the question arises: how reasonable is the use of organisms to study neurological disorders when the model of choice does not contain neurons? Here we will review the surprising, and novel emerging use of the model organism Dictyostelium discoideum, a species of soil-living amoeba, as a valuable biomedical tool to study the normal function of neurodegenerative genes. Historically, the evidence on the usefulness of simple organisms to understand the etiology of cellular pathology cannot be denied. But using an organism without a central nervous system to understand diseases of the brain? We will first introduce the life cycle of Dictyostelium, the presence of many disease genes in the genome and how it has provided unique opportunities to identify mechanisms of disease involving actin pathologies, mitochondrial disease, human lysosomal and trafficking disorders and host-pathogen interactions. Secondly, I will highlight recent studies on the function of HTT, presenilin γ-secretase and Hirano bodies conducted in Dictyostelium. I will then outline the limitations and future directions in using Dictyostelium to study disease, and finally conclude that given the evolutionary conservation of genes between Dictyostelium and humans and the organisms' genetic tractability, that this system provides a fertile environment for discovering normal gene function related to neurodegeneration and will permit translational studies in higher systems.

【 授权许可】

   
2012 Myre; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713061256205.pdf 1527KB PDF download
Figure 4. 84KB Image download
Figure 3. 42KB Image download
Figure 2. 118KB Image download
Figure 1. 62KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Parent CA, Devreotes P: Molecular genetics of signal transduction in Dictyostelium. Annu Rev Biochem 1996, 65:411-440.
  • [2]Soderbom F, Loomis B: Cell-cell signaling during Dictyostelium development. Trends Microbiol 1998, 6(10):402-406.
  • [3]Williams JG, Duffy KT, Lane DP, McRobbie SJ, Harwood AJ, Traynor D, Kay RR, Jermyn KA: Origins of the prestalk-prespore pattern in Dictyostelium development. Cell 1989, 59(6):1157-1163.
  • [4]Eichinger L, Pachebat JA, Glöckner G, Rajandream MA, Sucgang R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, Tunggal B, Kummerfeld S, et al.: The genome of the social amoeba Dictyostelium discoideum. Nature 2005, 435:43-57.
  • [5]Parikh A, Miranda ER, Katoh-Kurasawa M, Fuller D, Rot G, Zagar L, Curk T, Sucgang R, Chen R, Zupan B, Loomis WF, Kuspa A, Shaulsky G: Conserved developmental transcriptomes in evolutionarily divergent species. Genome Biol 2010, 11(3):R35. BioMed Central Full Text
  • [6]Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, et al.: The genome sequence of Drosophila melanogaster. Science 2000, 287(5461):2185-2195.
  • [7]Bosgraaf L, Van Haastert PJ: Roc, a Ras/GTPase domain in complex proteins. Biochim Biophys Acta 2003, 1643:5-10.
  • [8]McMains VC, Myre MA, Kreel L, Kimmel AR: Dictyostelium possesses highly diverged presenilin/gamma-secretase that regulates growth and cell-fate specification and can accurately process human A: a system for functional studies of the presenilin/γ-secretase complex. Dis Models Mech 2010, 3(9-10):581-594.
  • [9]Myre MA, Lumsden AL, Thompson MN, Wasco W, Macdonald ME, Gusella JF: Deficiency of huntingtin has pleiotropic effects in the social amoeba Dictyostelium discoideum. PLoS Genet 2011, 7(4):e1002052.
  • [10]Wang Y, Steimle PA, Ren Y, Ross CA, Robinson DN, Egelhoff TT, Sesaki H: Iijima: Dictyostelium huntingtin controls chemotaxis and cytokinesis through the regulation of myosin II phosphorylation. M Mol Biol Cell 2011, 22(13):2270-2281.
  • [11]Zhang S, Charest PG, Firtel RA: Spatiotemporal regulation of Ras activity provides directional sensing. Curr Biol 2008, 18(20):1587-1593.
  • [12]Barker WW, Luis CA, Kashuba A, Luis M, Harwood DG, Loewenstein D, Waters C, Jimison P, Shepherd E, Sevush S, Graff-Radford N, Newland D, et al.: Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the State of Florida Brain Bank. Alzheimer Dis Assoc Disord 2002, 16(4):203-212.
  • [13]Golde TE, Eckman CB, Younkin SG: Biochemical detection of Abeta isoforms: implications for pathogenesis, diagnosis, and treatment of Alzheimer's disease. Biochim Biophys Acta 2000, 1502(1):172-187.
  • [14]Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002, 297(5580):353-356.
  • [15]Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L: Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 1991, 349:704-706.
  • [16]Levy E, Carman MD, Fernandez-Madrid IJ, Power MD, Lieberburg I, van Duinen SG, Bots GT, Luyendijk W, Frangione B: Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 1995, 248:1124-1126.
  • [17]Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K, Crowley AC, Ying-Hui F, Guenette SY, Galas D, Nemens E, Wijsman EM, Bird TD, Schellenberg GD, Tanzi RE: Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 1995, 269:973-977.
  • [18]Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, TSuda T, Mar L, et al.: Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 1995, 375:754-760.
  • [19]Zhang YW, Thompson R, Zhang H, Xu H: APP processing in Alzheimer's disease. Mol Brain 2011, 4:3. BioMed Central Full Text
  • [20]De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Von Figura K, Van Leuven F: Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 1998, 391:387-390.
  • [21]De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, Schroeter EH, Schrijvers V, Wolfe MS, Ray WJ, Goate A, Kopan R: A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 1999, 398:518-522.
  • [22]Struhl G, Greenwald I: Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 1999, 398(6727):522-525.
  • [23]Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ: Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 1999, 398:513-517.
  • [24]De Strooper B: Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron 2003, 38(1):9-12.
  • [25]Edbauer D, Winkler E, Regula JT, Pesold B, Steiner H, Haass C: Reconstitution of gamma-secretase activity. Nat Cell Biol 2003, 5:486-488.
  • [26]Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ: Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci USA 2003, 100(11):6382-6387.
  • [27]Yu G, Nishimura M, Arawaka S, Levitan D, Zhang L, Tandon A, Song YQ, Rogaeva E, Chen F, Kawarai T, Supala A, Levesque L, et al.: Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and Aβ processing. Nature 2000, 407(6800):48-54.
  • [28]Kim SD, Kim J: Sequence analyses of presenilin mutations linked to familial Alzheimer's disease. Cell Stress Chaperones 2008, 13:401-412.
  • [29]Gu Y, Sanjo N, Chen F, Hasegawa H, Petit A, Ruan X, Li W, Shier C, Kawarai T, Schmitt-Ulms G, Westaway D, St. George-Hyslop P, Fraser PE: The presenilin proteins are components of multiple membrane-bound complexes that have different biological activities. J Biol Chem 2004, 279(30):31329-31336.
  • [30]Baumeister R: The physiological role of presenilins in cellular differentiation: lessons from model organisms. Eur Arch Psychiatry Clin Neurosci 1999, 249(6):280-287.
  • [31]van Tijn P, Kamphuis W, Marlatt MW, Hol EM, Lucassen PJ: Presenilin mouse and zebrafish models for dementia: focus on neurogenesis. Prog Neurobiol 2011, 93(2):149-164.
  • [32]Neely KM, Green KN, LaFerla FM: Presenilin is necessary for efficient proteolysis through the autophagy-lysosome system in a γ-secretase-independent manner. J Neurosci 2011, 31(8):2781-2791.
  • [33]McCarthy JV, Twomey C, Wujek P: Presenilin-dependent regulated intramembrane proteolysis and γ-secretase activity. Cell Mol Life Sci 2009, 66(9):1534-1555.
  • [34]Jutras I, Laplante A, Boulais J, Brunet S, Thinakaran G, Desjardins M: γ-secretase is a functional component of phagosomes. J Biol Chem 2005, 280(43):36310-36317.
  • [35]The Huntington's Disease Collaborative Research Group: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's Disease chromosomes. Cell 1993, 72:971-983.
  • [36]Reiner A, Albin RL, Anderson KD, D'Amato CJ, Penney JB, Young AB: Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci USA 1998, 85(15):5733-5737.
  • [37]Rosas HD, Koroshetz WJ, Chen YI, Skeuse C, Vangel M, Cudkowicz ME, Caplan K, Marek K, Seidman LJ, Makris N, Jenkins BG, Goldstein JM: Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 2003, 60(10):1615-1620.
  • [38]Rosas HD, Hevelone ND, Zaleta AK, Greve DN, Salat DH, Fischl B: Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology 2005, 65(5):745-747.
  • [39]Cattaneo E, Zuccato C, Tartari M: Normal huntingtin function: An alternative approach to Huntington's disease. Nat Rev Neurosci 2005, 6(12):919-930.
  • [40]Andrade MA, Bork P: HEAT repeats in the huntingtin protein. Nat Genet 1995, 11(2):115-116.
  • [41]Zuccato C, Valenza M, Cattaneo E: Molecular mechanisms and potential therapeutical targets in Huntington's disease. Physiol Rev 2010, 90(3):905-981.
  • [42]Rigamonti D, Bolognini D, Mutti C, Zuccato C, Tartari M, Sola F, Valenza M, Kazantsev AG, Cattaneo E: Loss of huntingtin function complemented by small molecules acting as repressor element 1/neuron restrictive silencer element silencer modulators. J Biol Chem 2007, 282(34):24554-24562.
  • [43]Varma H, Voisine C, DeMarco CT, Cattaneo E, Lo DC, Hart AC, Stockwell BR: Selective inhibitors of death in mutant huntingtin cells. Nat Chem Biol 2007, 3(2):99-100.
  • [44]Wang Y, Steimle PA, Ren Y, Ross CA, Robinson DN, Egelhoff TT, Sesaki H, Iijima : Dictyostelium huntingtin controls chemotaxis and cytokinesis through the regulation of myosin II phosphorylation. M Mol Biol Cell 2011, 22(13):2270-2281.
  • [45]Lumsden AL, Henshall TL, Dayan S, Lardelli MT, Richards RI: Huntingtin-deficient zebrafish exhibit defects in iron utilization and development. Hum Mol Genet 2007, 16(16):1905-1920.
  • [46]Imarisio S, Carmichael J, Korolchuk V, Chen CW, Saiki S, Rose C, Krishna G, Davies JE, Ttofi E, Underwood BR, Rubinsztein DC: Huntington's disease: from pathology and genetics to potential therapies. Biochem J 2008, 412(2):191-209.
  • [47]Munsie L, Caron N, Atwal RS, Marsden I, Wild EJ, Bamburg JR, Tabrizi SJ, Truant R: Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease. Hum Mol Genet 2011, 20(10):1937-1951.
  • [48]Dent EW, Merriam EB, Hu X: The dynamic cytoskeleton: backbone of dendritic spine plasticity. Curr Opin Neurobiol 2011, 21(1):175-181.
  • [49]Ferrante RJ, Kowall NW, Richardson EP: Proliferative and degenerative changes in striatal spiny neurons in Huntington's disease: a combined study using the section-Golgi method and calbindin D28k immunocytochemistry. J Neurosci 1991, 12:3877-3887.
  • [50]Angeli S, Shao J, Diamond MI: F-actin binding regions on the androgen receptor and huntingtin increase aggregation and alter aggregate characteristics. PLoS One 2010, 5(2):e9053.
  • [51]Bezprozvanny I: Inositol 1,4,5-tripshosphate receptor, calcium signalling and Huntington's disease. Subcell Biochem 2007, 45:323-335.
  • [52]Henshall TL, Tucker B, Lumsden AL, Nornes S, Lardelli MT: Selective neuronal requirement for huntingtin in the developing zebrafish. Hum Mol Genet 2009, 18(24):4830-4842.
  • [53]Reiner A, Del Mar N, Meade CA, Yang H, Dragatsis I: Neurons lacking huntingtin differentially colonize brain and survive in chimeric mice. J Neurosci 2001, 21(19):7608-7619.
  • [54]Cartier L, Galvez S, Gajdusek DC: Familial clustering of the ataxic form of Creutzfeldt-Jacob disease with Hirano bodies. J Neurol Neurosurg Psychiatry 1985, 48(3):234-238.
  • [55]Hirano A: Hirano bodies and related neuronal inclusions. Neuropath Appl Neurobiol 1994, 20:3-11.
  • [56]Tomanaga M: Hirano body in extraocular muscle. Acta Neuropathol 1983, 60:309-313.
  • [57]Gibson PH, Tomlinson BE: Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer's disease. J Neurol Sci 1997, 33:199-206.
  • [58]Maselli AG, Davis R, Furukawa R, Fechheimer M: Formation of Hirano bodies in Dictyostelium and mammalian cells induced by expression of a modified form of an actin-crosslinking protein. J Cell Sci 2002, 115:(Pt 9):1939-1949.
  • [59]Davis RC, Furukawa R, Fechheimer M: A cell culture model for investigation of Hirano bodies. Acta Neuropathol 2008, 115(2):205-217.
  文献评价指标  
  下载次数:55次 浏览次数:11次