European Journal of Medical Research | |
Macrolide antibiotics like azithromycin increase lipopolysaccharide-induced IL-8 production by human gingival fibroblasts | |
P-L Wang2  Y Imamura2  Y Fujinami2  T Hattori2  T Ara2  A Kamemoto1  | |
[1] Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University;Department of Pharmacology, Matsumoto Dental University, Hirooka, Shiojiri, Nagano, Japan | |
关键词: anti-inflammatory effect; interleukin-8; human gingival fibroblast; azithromycin; macrolide antibiotics; | |
Others : 1093656 DOI : 10.1186/2047-783X-14-7-309 |
|
received in 2009-04-24, accepted in 2009-06-05, 发布年份 2009 | |
【 摘 要 】
Objective
Macrolide antibiotics are reported to modulate the production of cytokines in various type of cells. We examined the effect of macrolide antibiotics on inflammatory cytokines (IL-6 and IL-8) and chemical mediator (PGE2) and also matrix metalloproteinases (MMPs) productions by human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS).
Methods
The effect of macrolide antibiotics [erythromycin (EM), azithromycin (AZM) and josamycin (JOM)] on HGFs proliferation were examined by MTT assay. HGFs were treated with LPS from Porphyromonas gingivalis (PgLPS) and macrolide antibiotics, and IL-6, IL-8 and PGE2 levels were evaluated by ELISA. MMPs were detected by gelatin zymography.
Results
AZM slightly but significantly decreased HGFs proliferation, while EM and JOM did not affected. AZM increased PgLPS-induced IL-8 production dose-dependently, while AZM did not alter IL-6 and PGE2 productions. EM and JOM did not altered PgLPS-induced IL-6, IL-8 and PGE2 productions. All macrolide antibiotics did not alter MMPs production. These results indicate that macrolide antibiotics have no direct anti-inflammatory effect. However, the use of the inhibitors of cell signaling pathway failed to reveal the mechanism that AZM enhanced PgLPS-induced IL-8 production.
Conclusion
These results suggest macrolide antibiotics have an indirect anti-inflammatory effect as a result of their antimicrobial properties. Because AZM increased LPS-induced IL-8 production by HGFs, the possibility is considered that neutrophils may be migrated to periodontal tissue and phagocytize the periodontopathic bacteria more efficiently.
【 授权许可】
2009 I. Holzapfel Publishers
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150130164906792.pdf | 1407KB | download | |
Figure 4. | 51KB | Image | download |
Figure 3. | 20KB | Image | download |
Figure 2. | 59KB | Image | download |
Figure 1. | 18KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Costerton JW, Stewart PS, Greenberg EP: Bacterial biofilms: a common cause of persistent infections. Science 1999, 284:1318-1322.
- [2]Girard AE, Girard D, English AR, Gootz TD, Cimochowski CR, Faiella JA, Haskell SL, Retsema JA: Pharmacokinetic and in vivo studies with azithromycin (CP-62,993), a new macrolide with an extended half-life and excellent tissue distribution. Antimicrob Agents Chemother 1987, 31:1948-1954.
- [3]Baldwin DR, Wise R, Andrews JM, Ashby JP, Honey-bourne D: Azithromycin concentrations at the sites of pulmonary infection. Eur Respir J 1990, 3:886-890.
- [4]Davila D, Kolacny-Babic L, Plavsic F: Pharmacokinetics of azithromycin after single oral dosing of experimental animals. Biopharm Drug Dispos 1991, 12:505-514.
- [5]Blandizzi C, Malizia T, Lupetti A, Pesce D, Gabriele M, Giuca MR, Campa M, Del Tacca M, Senesi S: Periodontal tissue disposition of azithromycin in patients affected by chronic inflammatory periodontal diseases. J Periodontol 1999, 70:960-966.
- [6]Tateda K, Comte R, Pechere JC, Kohler T, Yamaguchi K, Van Delden C: Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2001, 45:1930-1933.
- [7]Tamura A, Ara T, Imamura Y, Fujii T, Wang PL: The effects of antibiotics on in vitro biofilm model of periodontal disease. Eur J Med Res 2008, 13:439-445.
- [8]Fujii T, Wang PL, Hosokawa Y, Shirai S, Tamura A, Hikita K, Maida T, Ochi M, Baehni PC: Effect of systemically administrated azithromcycin in early onset aggressive periodontitis. Perio 2004, 1:321-325.
- [9]Smith SR, Foyle DM, Daniels J, Joyston-Bechal S, Smales FC, Sefton A, Williams J: A double-blind placebo-controlled trial of azithromycin as an adjunct to non-surgical treatment of periodontitis in adults: clinical results. J Clin Periodontol 2002, 29:54-61.
- [10]Mascarenhas P, Gapski R, Al-Shammari K, Hill R, Soehren S, Fenno JC, Giannobile WV, Wang HL: Clinical response of azithromycin as an adjunct to nonsurgical periodontal therapy in smokers. J Periodontol 2005, 76:426-436.
- [11]Gomi K, Yashima A, Nagano T, Kanazashi M, Maeda N, Arai T: Effects of full-mouth scaling and root planing in conjunction with systemically administered azithromycin. J Periodontol 2007, 78:422-429.
- [12]Haas AN, de Castro GD, Moreno T, Susin C, Albandar JM, Oppermann RV, Rösing CK: Azithromycin as an adjunctive treatment of aggressive periodontitis: 12-months randomized clinical trial. J Clin Periodontol 2008, 35:696-704.
- [13]Kurdowska A, Noble JM, Griffith DE: The effect of azithromycin and clarithromycin on ex vivo interleukin-8 (IL-8) release from whole blood and IL-8 production by human alveolar macrophages. J Antimicrob Chemother 2001, 47:867-870.
- [14]Shinkai M, Foster GH, Rubin BK: Macrolide antibiotics modulate ERK phosphorylation and IL-8 and GMCSF production by human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2006, 290:L75-85.
- [15]Uriarte SM, Molestina RE, Miller RD, Bernabo J, Farinati A, Eiguchi K, Ramirez JA, Summersgill JT: Effect of macrolide antibiotics on human endothelial cells activated by Chlamydia pneumoniae infection and tumor necrosis factor-a. J Infect Dis 2002, 185:1631-1636.
- [16]Cigana C, Nicolis E, Pasetto M, Assael BM, Melotti P: Anti-inflammatory effects of azithromycin in cystic fibrosis airway epithelial cells. Biochem Biophys Res Commun 2006, 350:977-982.
- [17]Cigana C, Assael BM, Melotti P: Azithromycin selectively reduces tumor necrosis factor alpha levels in cystic fibrosis airway epithelial cells. Antimicrob Agents Chemother 2007, 51:975-981.
- [18]Vanaudenaerde BM, Wuyts WA, Geudens N, Dupont LJ, Schoofs K, Smeets S, Van Raemdonck DE, Verleden GM: Macrolides inhibit IL17-induced IL8 and 8-isoprostane release from human airway smooth muscle cells. Am J Transplant 2007, 7:76-82.
- [19]Ivetic Tkalcevic V, Bosnjak B, Hrvacic B, Bosnar M, Marjanovic N, Ferencic Z, Situm K, Culic O, Parnham MJ, Erakovic V: Anti-inflammatory activity of azithromycin attenuates the effects of lipopolysaccharide administration in mice. Eur J Pharmacol 2006, 539:131-138.
- [20]Bartold PM, Haynes DR: Interleukin-6 production by human gingival fibroblasts. J Periodontal Res 1991, 26:339-345.
- [21]Tamura M, Tokuda M, Nagaoka S, Takada H: Lipopolysaccharides of Bacteroides intermedius (Prevotella intermedia) and Bacteroides (Porphyromonas) gingivalis induce interleukin-8 gene expression in human gingival fibroblast cultures. Infect Immun 1992, 60:4932-4937.
- [22]Sismey-Durrant HJ, Hopps RM: Effect of lipopolysaccharide from Porphyromonas gingivalis on prostaglandin E2 and interleukin-1b release from rat periosteal and human gingival fibroblasts in vitro. Oral Microbiol Immunol 1991, 6:378-380.
- [23]Wang PL, Ohura K: Porphyromonas gingivalis lipopolysaccharide signaling in gingival fibroblasts-CD14 and Toll-like receptors. Crit Rev Oral Biol Med 2002, 13:132-142.
- [24]Ara T, Kurata K, Hirai K, Uchihashi T, Uematsu T, Imamura Y, Furusawa K, Kurihara S, Wang PL: Human gingival fibroblasts are critical in sustaining inflammation in periodontal disease. J Periodontal Res 2009, 44:21-27.
- [25]Ara T, Fujinami Y, Imamura Y, Wang PL: Lipopolysaccharide-treated human gingival fibroblasts continuously produce PGE2. J Hard Tissue Biol 2008, 17:121-124.
- [26]Wang PL, Sato K, Oido M, Fujii T, Kowashi Y, Shinohara M, Ohura K, Tani H, Kuboki Y: Involvement of CD14 on human gingival fibroblasts in Porphyromonas gingivalis lipopolysaccharide-mediated interleukin-6 secretion. Arch Oral Biol 1998, 43:687-694.
- [27]Heussen C, Dowdle EB: Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem 1980, 102:196-202.
- [28]Kurata K, Ara T, Kurihara S, Yamada K, Wang PL: LPS-stimulated Apert syndrome gingival keratinocytes show markedly suppressed inflammatory cytokine production. J Oral Biosci 2008, 50:59-67.
- [29]R Development Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing 2008.
- [30]Gomi K, Yashima A, Iino F, Kanazashi M, Nagano T, Shibukawa N, Ohshima T, Maeda N, Arai T: Drug concentration in inflamed periodontal tissues after systemically administered azithromycin. J Periodontol 2007, 78:918-923.
- [31]Takada H, Mihara J, Morisaki I, Hamada S: Induction of interleukin-1 and -6 in human gingival fibroblast cultures stimulated with Bacteroides lipopolysaccharides. Infect Immun 1991, 59:295-301.
- [32]Okada H, Murakami S: Cytokine expression in periodontal health and disease. Crit Rev Oral Biol Med 1998, 9:248-266.
- [33]Noguchi K, Ishikawa I: The roles of cyclooxygenase-2 and prostaglandin E2 in periodontal disease. Periodontol 2000 2007, 43:85-101.
- [34]Bouwman JJ, Visseren FL, Bouter PK, Diepersloot RJ: Azithromycin inhibits interleukin-6 but not fibrinogen production in hepatocytes infected with cytomegalovirus and Chlamydia pneumoniae. J Lab Clin Med 2004, 144:18-26.