| Genome Biology | |
| Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest | |
| Joerg Bohlmann4  Steven JM Jones6  Inanc Birol1  Dezene P W Huber5  Felix AH Sperling3  Richard Moore2  Pawan Pandoh2  Yongjun Zhao2  Jasmine K Janes3  Hannah Henderson4  Maria Li4  Anh Nguyen4  Shaun D Jackman2  Diana L Palmquist2  Greg A Taylor2  Simon K Chan2  T Roderick Docking2  Nancy Y Liao2  Macaire MS Yuen4  Christopher I Keeling4  | |
| [1] Department of Medical Genetics, University of British Columbia, University of British Columbia, 4500 Oak St., Vancouver, BC, Canada V6H 3N1;Canada's Michael Smith Genome Sciences Centre, 570 W 7th Ave #100 Vancouver, BC, Canada V5Z 4S6;Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB, Canada T6G 2E9;Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, Canada V6T 1A4;Ecosystem Science and Management Program, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada V2N 4Z9;Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6 | |
| 关键词: sex chromosomes; horizontal gene transfer; plant cell wall-degrading enzymes; glutathione S-transferase; cytochrome P450; conifer; bark beetles; Scolytinae; Curculionoidea; Coleoptera; | |
| Others : 866874 DOI : 10.1186/gb-2013-14-3-r27 |
|
| received in 2012-10-10, accepted in 2013-03-27, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
The mountain pine beetle, Dendroctonus ponderosae Hopkins, is the most serious insect pest of western North American pine forests. A recent outbreak destroyed more than 15 million hectares of pine forests, with major environmental effects on forest health, and economic effects on the forest industry. The outbreak has in part been driven by climate change, and will contribute to increased carbon emissions through decaying forests.
Results
We developed a genome sequence resource for the mountain pine beetle to better understand the unique aspects of this insect's biology. A draft de novo genome sequence was assembled from paired-end, short-read sequences from an individual field-collected male pupa, and scaffolded using mate-paired, short-read genomic sequences from pooled field-collected pupae, paired-end short-insert whole-transcriptome shotgun sequencing reads of mRNA from adult beetle tissues, and paired-end Sanger EST sequences from various life stages. We describe the cytochrome P450, glutathione S-transferase, and plant cell wall-degrading enzyme gene families important to the survival of the mountain pine beetle in its harsh and nutrient-poor host environment, and examine genome-wide single-nucleotide polymorphism variation. A horizontally transferred bacterial sucrose-6-phosphate hydrolase was evident in the genome, and its tissue-specific transcription suggests a functional role for this beetle.
Conclusions
Despite Coleoptera being the largest insect order with over 400,000 described species, including many agricultural and forest pest species, this is only the second genome sequence reported in Coleoptera, and will provide an important resource for the Curculionoidea and other insects.
【 授权许可】
2013 Keeling et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140728062913518.pdf | 4467KB | ||
| 79KB | Image | ||
| 104KB | Image | ||
| 37KB | Image | ||
| 44KB | Image | ||
| 66KB | Image | ||
| 187KB | Image | ||
| 67KB | Image | ||
| 47KB | Image |
【 图 表 】
【 参考文献 】
- [1]Hammond PM: Species inventory. In Global Biodiversity, Status of the Earth's Living Resources. Edited by Groombridge B. London: Chapman and Hall; 1992:17-39.
- [2]Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, Gibbs R, Bucher G, Friedrich M, Grimmelikhuijzen CJ, Klingler M, Lorenzen M, Roth S, Schroder R, Tautz D, Zdobnov EM, Muzny D, Attaway T, Bell S, Buhay CJ, Chandrabose MN, Chavez D, Clerk-Blankenburg KP, Cree A, Dao M, Davis C, Chacko J, Dinh H, Dugan-Rocha S, Fowler G, et al.: The genome of the model beetle and pest Tribolium castaneum. Nature 2008, 452:949-955.
- [3]Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, John OS, Wild R, Hammond PM, Ahrens D, Balke M, Caterino MS, Gomez-Zurita J, Ribera I, Barraclough TG, Bocakova M, Bocak L, Vogler AP: A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 2007, 318:1913-1916.
- [4]Safranyik L, Carroll AL, Régnière J, Langor DW, Riel WG, Shore TL, Peter B, Cooke BJ, Nealis VG, Taylor SW: Potential for range expansion of mountain pine beetle into the boreal forest of North America. The Canadian Entomologist 2010, 142:415-442.
- [5]de la Giroday H-MC, Carroll AL, Aukema BH: Breach of the northern Rocky Mountain geoclimatic barrier: initiation of range expansion by the mountain pine beetle. Journal of Biogeography 2012, 39:1112-1123.
- [6]Cullingham CI, Cooke JE, Dang S, Davis CS, Cooke BJ, Coltman DW: Mountain pine beetle host-range expansion threatens the boreal forest. Molecular Ecology 2011.
- [7]Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L: Mountain pine beetle and forest carbon feedback to climate change. Nature 2008, 452:987-990.
- [8]Wood SL: The Bark and Ambrosia Beetles of North and Central America (Coleoptera: Scolytidae), a Taxonomic Monograph. Salt Lake City: Brigham Young University; 1982.
- [9]Sequeira AS, Normark BB, Farrell BD: Evolutionary assembly of the conifer fauna: distinguishing ancient from recent associations in bark beetles. Proceedings of The Royal Society of London Series B-Biological Sciences 2000, 267:2359-2366.
- [10]Reeve JD, Anderson FE, Kelley ST: Ancestral state reconstruction for Dendroctonus bark beetles: evolution of a tree killer. Environmental Entomology 2012, 41:723-730.
- [11]Samarasekera GDNG, Bartell NV, Lindgren BS, Cooke JE, Davis CS, James PM, Coltman DW, Mock KE, Murray BW: Spatial genetic structure of the mountain pine beetle (Dendroctonus ponderosae) outbreak in western Canada: historical patterns and contemporary dispersal. Molecular Ecology 2012, 21:2931-2948.
- [12]Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH: Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. BioScience 2008, 58:501-517.
- [13]Kurz WA, Stinson G, Rampley GJ, Dymond CC, Neilson ET: Risk of natural disturbances makes future contribution of Canada's forests to the global carbon cycle highly uncertain. Proceedings of the National Academy of Sciences of the United States of America 2008, 105:1551-1555.
- [14]Franceschi VR, Krokene P, Christiansen E, Krekling T: Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytologist 2005, 167:353-376.
- [15]Keeling CI, Bohlmann J: Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytologist 2006, 170:657-675.
- [16]Safranyik L, Carroll AL: The biology and epidemiology of the mountain pine beetle in lodgepole pine forests. In The mountain pine beetle: A synthesis of biology, management, and impacts on lodgepole pine. Edited by Safranyik L, Wilson B. Victoria, BC, Canada: Natural Resources Canada, Canadian Forest Service; 2006:3-66.
- [17]Symonds MR, Elgar MA: The evolution of pheromone diversity. Trends in Ecology and Evolution 2008, 23:220-228.
- [18]DiGuistini S, Liao NY, Platt D, Robertson G, Seidel M, Chan SK, Docking TR, Birol I, Holt RA, Hirst M, Mardis E, Marra MA, Hamelin RC, Bohlmann J, Breuil C, Jones SJ: De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data. Genome Biology 2009, 10:R94. BioMed Central Full Text
- [19]DiGuistini S, Wang Y, Liao NY, Taylor G, Tanguay P, Feau N, Henrissat B, Chan SK, Hesse-Orce U, Alamouti SM, Tsui CK, Docking RT, Levasseur A, Haridas S, Robertson G, Birol I, Holt RA, Marra MA, Hamelin RC, Hirst M, Jones SJ, Bohlmann J, Breuil C: Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. Proceedings of the National Academy of Sciences of the United States of America 2011, 108:2504-2509.
- [20]Hesse-Orce U, DiGuistini S, Keeling CI, Wang Y, Li M, Henderson H, Docking TR, Liao NY, Robertson G, Holt RA, Jones SJM, Bohlmann Jr, Breuil C: Gene discovery for the bark beetle-vectored fungal tree pathogen Grosmannia clavigera. BMC Genomics 2010, 11:536. BioMed Central Full Text
- [21]DiGuistini S, Ralph SG, Lim YW, Holt R, Jones S, Bohlmann J, Breuil C: Generation and annotation of lodgepole pine and oleoresin-induced expressed sequences from the blue-stain fungus Ophiostoma clavigerum, a mountain pine beetle-associated pathogen. FEMS Microbiology Letters 2007, 267:151-158.
- [22]Eigenheer AL, Keeling CI, Young S, Tittiger C: Comparison of gene representation in midguts from two phytophagous insects, Bombyx mori and Ips pini, using expressed sequence tags. Gene 2003, 316:127-136.
- [23]Aw T, Schlauch K, Keeling CI, Young S, Bearfield JC, Blomquist GJ, Tittiger C: Functional genomics of mountain pine beetle (Dendroctonus ponderosae) midguts and fat bodies. BMC Genomics 2010, 11:215. BioMed Central Full Text
- [24]Keeling CI, Henderson H, Li M, Yuen M, Clark EL, Fraser JD, Huber DPW, Liao NY, Docking TR, Birol I, Chan SK, Taylor GA, Palmquist D, Jones SJM, Bohlmann J: Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests. Insect Biochemistry and Molecular Biology 2012, 42:525-536.
- [25]Adams AS, Boone CK, Bohlmann J, Raffa KF: Responses of bark beetle-associated bacteria to host monoterpenes and their relationship to insect life histories. Journal of Chemical Ecology 2011, 37:808-817.
- [26]Muratoğlu H, Sezem K, Demirbağ Z: Determination and pathogenicity of the bacterial flora associated with the spruce bark beetle, Ips typographus (L.) (Coleoptera: Curculionidae: Scolytinae). Turkish Journal of Biology 2011, 35:9-20.
- [27]Morales-Jiménez J, Zúñiga G, Villa-Tanaca L, Hernández-Rodríguez C: Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microbial Ecology 2009, 58:879-891.
- [28]Hu Y, Zhang W, Liang H, Liu L, Peng G, Pan Y, Yang X, Zheng B, Gao GF, Zhu B, Hu H: Whole-genome sequence of a multidrug-resistant clinical isolate of Acinetobacter lwoffii. Journal of Bacteriology 2011, 193:5549-5550.
- [29]Parra G, Bradnam K, Korf I: CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 2007, 23:1061-1067.
- [30]Smith SG, Virkki N: Coleoptera. In Animal Cytogenetics. Volume 3. Berlin: Gebrüder Borntraeger; 1978::366.
- [31]Lanier GN, Wood DL: Controlled mating, karyology, morphology, and sex-ratio in the Dendroctonus ponderosae complex. Annals of the Entomological Society of America 1968, 61:517-526.
- [32]Lanier GN: Cytotaxonomy of Dendroctonus. In Application of Genetics and Cytology in Insect Systematics and Evolution, Proceedings of the 1980 Annual Meeting of the Entomological Society of America. Edited by Stock MW. Moscow, Idaho, USA: Forest, Wildlife and Range Experimental Station, University of Idaho, Moscow; 1981:33-66.
- [33]Zúñiga G, Cisneros R, Hayes JL, Macias-Samano J: Karyology, geographic distribution, and origin of the genus Dendroctonus Erichson (Coleoptera: Scolytidae). Annals of the Entomological Society of America 2002, 95:267-275.
- [34]Wang S, Lorenzen MD, Beeman RW, Brown SJ: Analysis of repetitive DNA distribution patterns in the Tribolium castaneum genome. Genome Biology 2008, 9:R61. BioMed Central Full Text
- [35]Winder RS, Macey DE, Cortese J: Dominant bacteria associated with broods of mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae). Journal of the Entomological Society of British Columbia 2010, 107:43-56.
- [36]Vasanthakumar A, Italo Delalibera J, Handelsman J, Klepzig KD, Schloss PD, Raffa KF: Characterization of gut-associated bacteria in larvae and adults of the southern pine beetle, Dendroctonus frontalis Zimmermann. Environmental Entomology 2006, 35:1710-1717.
- [37]Morales-Jiménez J, Zúñiga G, Ramírez-Saad HC, Hernández-Rodríguez C: Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microbial Ecology 2012, 64:268-78.
- [38]Andersson MN, Grosse-Wilde E, Keeling CI, Bengtsson JM, Yuen MMS, Li M, Hillbur Y, Bohlmann J, Hansson BS, Schlyter F: Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics 2013, 14:198. BioMed Central Full Text
- [39]Kelley ST, Farrell BD: Is specialization a dead-end?: The phylogeny of host use in Dendroctonus bark beetles. Evolution 1998, 52:1731-1743.
- [40]Sequeira AS, Farrell BD: Evolutionary origins of Gondwanan interactions: how old are Araucaria beetle herbivores? Biological Journal of the Linnean Society 2001, 74:459-474.
- [41]McKenna DD, Sequeira AS, Marvaldi AE, Farrell BD: Temporal lags and overlap in the diversification of weevils and flowering plants. Proceedings of the National Academy of Sciences of the United States of America 2009, 106:7083-7088.
- [42]Zhu B, Lou MM, Xie GL, Zhang GQ, Zhou XP, Li B, Jin GL: Horizontal gene transfer in silkworm, Bombyx mori. BMC Genomics 2011, 12:248. BioMed Central Full Text
- [43]Thompson J, Robrish SA, Immel S, Lichtenthaler FW, Hall BG, Pikis A: Metabolism of sucrose and its five linkage-isomeric alpha-D-glucosyl-D-fructoses by Klebsiella pneumoniae. Participation and properties of sucrose-6-phosphate hydrolase and phospho-alpha-glucosidase. Journal of Biological Chemistry 2001, 276:37415-37425.
- [44]Acuña R, Padilla BE, Flórez-Ramos CP, Rubio JD, Herrera JC, Benavides P, Lee SJ, Yeats TH, Egan AN, Doyle JJ, Rose JK: Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proceedings of the National Academy of Sciences of the United States of America 2012. doi: 10.1073/pnas.1121190109
- [45]Choi JH, Kijimoto T, Snell-Rood E, Tae H, Yang Y, Moczek AP, Andrews J: Gene discovery in the horned beetle Onthophagus taurus. BMC Genomics 2010, 11:703. BioMed Central Full Text
- [46]Cornman SR, Schatz MC, Johnston SJ, Chen YP, Pettis J, Hunt G, Bourgeois L, Elsik C, Anderson D, Grozinger CM, Evans JD: Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera. BMC Genomics 2010, 11:602. BioMed Central Full Text
- [47]Gompert Z, Forister ML, Fordyce JA, Nice CC, Williamson RJ, Buerkle CA: Bayesian analysis of molecular variance in pyrosequences quantifies population genetic structure across the genome of Lycaeides butterflies. Molecular Ecology 2010, 19:2455-2473.
- [48]Boone CK, Aukema BH, Bohlmann J, Carroll AL, Raffa KF: Efficacy of tree defense physiology varies with bark beetle population density: a basis for positive feedback in eruptive species. Canadian Journal of Forestry Research 2011, 41:1174-1188.
- [49]Goodsman DW, Erbilgin N, Lieffers VJ: The impact of phloem nutrients on overwintering mountain pine beetles and their fungal symbionts. Environmental Entomology 2012, 41:478-486.
- [50]Pauchet Y, Wilkinson P, Chauhan R, Ffrench-Constant RH: Diversity of beetle genes encoding novel plant cell wall degrading enzymes. PLoS ONE 2010, 5:e15635.
- [51]Watanabe H, Tokuda G: Cellulolytic systems in insects. Annual Review of Entomology 2010, 55:609-632.
- [52]Feyereisen R: Evolution of insect P450. Biochemical Society Transactions 2006, 34:1252-1255.
- [53]Feyereisen R: Arthropod CYPomes illustrate the tempo and mode in P450 evolution. Biochimica et Biophysica Acta 2011, 1814:19-28.
- [54]Iga M, Kataoka H: Recent studies on insect hormone metabolic pathways mediated by cytochrome P450 enzymes. Biological & Pharmaceutical Bulletin 2012, 35:838-843.
- [55]Sztal T, Chung H, Berger S, Currie PD, Batterham P, Daborn PJ: A cytochrome p450 conserved in insects is involved in cuticle formation. PLoS ONE 2012, 7:e36544.
- [56]Sathyanarayanan S, Zheng X, Kumar S, Chen CH, Chen D, Hay B, Sehgal A: Identification of novel genes involved in light-dependent CRY degradation through a genome-wide RNAi screen. Genes & Development 2008, 22:1522-1533.
- [57]Sandstrom P, Welch WH, Blomquist GJ, Tittiger C: Functional expression of a bark beetle cytochrome P450 that hydroxylates myrcene to ipsdienol. Insect Biochemistry and Molecular Biology 2006, 36:835-845.
- [58]Che-Mendoza A, Penilla RP, Rodríguez DA: Insecticide resistance and glutathione S-transferases in mosquitoes: A review. African Journal of Biotechnology 2009, 8:1386-1397.
- [59]Habig WH, Pabst MJ, Jakoby WB: Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 1974, 249:7130-7139.
- [60]Atkins WM, Wang RW, Bird AW, Newton DJ, Lu AY: The catalytic mechanism of glutathione S-transferase (GST). Spectroscopic determination of the pKa of Tyr-9 in rat alpha 1-1 GST. Journal of Biological Chemistry 1993, 268:19188-19191.
- [61]Sheehan D, Meade G, Foley VM, Dowd CA: Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. The Biochemical Journal 2001, 360:1-16.
- [62]Enayati AA, Ranson H, Hemingway J: Insect glutathione transferases and insecticide resistance. Insect Molecular Biology 2005, 14:3-8.
- [63]Friedman R: Genomic organization of the glutathione S-transferase family in insects. Molecular Phylogenetics and Evolution 2011, 61:924-932.
- [64]Oppert C, Klingeman WE, Willis JD, Oppert B, Jurat-Fuentes JL: Prospecting for cellulolytic activity in insect digestive fluids. Comparative Biochemistry and Physiology Part B, Biochemistry & Molecular Biology 2010, 155:145-154.
- [65]Robinson GE, Hackett KJ, Purcell-Miramontes M, Brown SJ, Evans JD, Goldsmith MR, Lawson D, Okamuro J, Robertson HM, Schneider DJ: Creating a buzz about insect genomes. Science 2011, 331:1386.
- [66]Davis CS, Mock KE, Bentz BJ, Bromilow SM, Bartell NV, Murray BW, Roe AD, Cooke JEK: Isolation and characterization of 16 microsatellite loci in the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae). Molecular Ecology Resources 2009, 9:1071-1073.
- [67]Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I: ABySS: a parallel assembler for short read sequence data. Genome Research 2009, 19:1117-1123.
- [68]Canada's Michael Smith Genome Sciences Centre: Anchor: Post-processing tools for de novo assemblies. [http://www.bcgsc.ca/platform/bioinfo/software/anchor] webcite
- [69]Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, Holt C, Sanchez Alvarado A, Yandell M: MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Research 2008, 18:188-196.
- [70]Institute for Systems Biology: RepeatMasker. [http://www.repeatmasker.org/] webcite
- [71]Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J: Repbase Update, a database of eukaryotic repetitive elements. Cytogentic and Genome Research 2005, 110:462-467.
- [72]Stanke M, Tzvetkova A, Morgenstern B: AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome. Genome Biology 2006, (7 Suppl 1):S11 11-18.
- [73]Korf I: Gene finding in novel genomes. BMC Bioinformatics 2004, 5:59. BioMed Central Full Text
- [74]Lukashin AV, Borodovsky M: GeneMark.hmm: new solutions for gene finding. Nucleic Acids Research 1998, 26:1107-1115.
- [75]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 1997, 25:3389-3402.
- [76]Slater GS, Birney E: Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 2005, 6:31. BioMed Central Full Text
- [77]Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, et al.: InterPro: the integrative protein signature database. Nucleic Acids Research 2009, 37:D211-215.
- [78]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.
- [79]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25:2078-2079.
- [80]The R Project for Statistical Computing [http://www.r-project.org] webcite
- [81]K-State Bioinformatics Center: BeetleBase: Tribolium castaneum. [http://beetlebase.org] webcite
- [82]Price AL, Jones NC, Pevzner PA: De novo identification of repeat families in large genomes. Bioinformatics 2005, (21 Suppl 1):i351-358.
- [83]Chen F, Mackey AJ, Stoeckert CJ Jr, Roos DS: OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Research 2006, 34:D363-368.
- [84]Li L, Stoeckert CJ Jr, Roos DS: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Research 2003, 13:2178-2189.
- [85]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 2004, 32:1792-1797.
- [86]Price MN, Dehal PS, Arkin AP: FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS ONE 2010, 5:e9490.
- [87]Letunic I, Bork P: Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Research 2011, 39:W475-478.
PDF