期刊论文详细信息
Breast Cancer Research
Cyclin D1 cooperates with p21 to regulate TGFβ-mediated breast cancer cell migration and tumor local invasion
Jean Jacques Lebrun2  Suhad Ali2  Shafaat A Rabbani1  Ani Arakelian1  Jimin Guo2  Manuel A Villatoro2  Nadège Fils-Aimé2  Amal A Al-Odaini3  Meiou Dai2 
[1] Department of Medicine, McGill University Health Center, Royal Victoria Hospital, Montreal, QC, Canada;Division of Medical Oncology, Department of Medicine, McGill University Health Center, Royal Victoria Hospital, Montreal, QC, Canada;University of Dammam, Ministry of Higher Education, Saudi Arabia
关键词: Invasion;    Migration;    Breast cancer;    Transforming growth factor beta (TGFβ);    p21Cip1;    Cyclin D1;   
Others  :  794506
DOI  :  10.1186/bcr3441
 received in 2012-12-06, accepted in 2013-06-20,  发布年份 2013
PDF
【 摘 要 】

Introduction

Deregulation of the cell cycle machinery is often found in human cancers. Modulations in the cell cycle regulator function and expression result not only in proliferative advantages, but also lead to tumor progression and invasiveness of the cancer. In particular, cyclin D1 and p21 are often over-expressed in human cancers, correlating with high tumor grade, poor prognosis and increased metastasis. This prompted us to investigate the role of the cyclin D1/p21 signaling axis downstream of transforming growth factor beta (TGFβ) in breast cancer progression.

Methods

Cyclins mRNA and protein expressions were assessed by quantitative real-time PCR and Western blot in triple negative breast cancer cell lines. Co-localization and interaction between cyclin D1 and p21 were performed by immunocytochemistry and co-immunoprecipitation, respectively. Cell migration was assessed by wound healing and quantitative time-lapse imaging assays. In addition, the effects of cyclin D1 on cellular structure and actin organization were examined by staining with F-actin marker phalloidin and mesenchymal intermediate filament vimentin. Finally, a mammary fat pad xenograft mouse model was used to assess mammary tumor growth and local invasion.

Results

We found TGFβ to specifically up-regulate the expression of cyclin D1 in triple negative breast cancer cells. Induction of cyclin D1 is also required for TGFβ-mediated cell migration. Suppression of cyclin D1 expression not only resulted in a rounded and epithelial-like phenotype, but also prevented TGFβ-induced vimentin and F-actin co-localization at the cell edge as well as invadopodia formation. Furthermore, TGFβ promoted the nuclear co-localization and physical interaction between cyclin D1 and p21. The co-expression of cyclin D1 and p21 proteins are required for the initial steps of tumor development, as double knockdown of these two molecules prevented primary tumor formation in a Xenograft mouse model. Moreover, the in vivo studies indicated that locally advanced features of the invasive tumors, including skeletal muscle, mammary fat pad and lymphovascular invasion, as well as ulcerated skin, were attenuated in the absence of cyclin D1 and p21.

Conclusions

Thus, our findings highlight the cyclin D1/p21 signaling axis as a critical regulator of TGFβ-mediated tumor growth initiation and local tumor cell invasion, both in vitro and in vivo.

【 授权许可】

   
2013 Dai et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705070313162.pdf 4679KB PDF download
Figure 5. 119KB Image download
Figure 4. 89KB Image download
Figure 3. 117KB Image download
Figure 2. 61KB Image download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Gupta GP, Massague J: Cancer metastasis: building a framework. Cell 2006, 127:679-695.
  • [2]Fidler IJ: The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer 2003, 3:453-458.
  • [3]Mack GS, Marshall A: Lost in migration. Nat Biotechnol 2010, 28:214-229.
  • [4]Shi Y, Massague J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003, 113:685-700.
  • [5]Bierie B, Moses HL: Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 2006, 6:506-520.
  • [6]Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, Bell G, Guo W, Rubin J, Richardson AL, Weinberg RA: Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 2011, 145:926-940.
  • [7]Labelle M, Begum S, Hynes RO: Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 2011, 20:576-590.
  • [8]Dumont N, Arteaga CL: Targeting the TGF beta signaling network in human neoplasia. Cancer Cell 2003, 3:531-536.
  • [9]Derynck R, Akhurst RJ, Balmain A: TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001, 29:117-129.
  • [10]Akhurst RJ, Derynck R: TGF-beta signaling in cancer--a double-edged sword. Trends Cell Biol 2001, 11:S44-51.
  • [11]Wakefield LM, Roberts AB: TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 2002, 12:22-29.
  • [12]Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E: Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 2009, 11:1287-1296.
  • [13]Chacko BM, Qin B, Correia JJ, Lam SS, de Caestecker MP, Lin K: The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization. Nat Struct Biol 2001, 8:248-253.
  • [14]Chacko BM, Qin BY, Tiwari A, Shi G, Lam S, Hayward LJ, de Caestecker M, Lin K: Structural basis of heteromeric smad protein assembly in TGF-beta signaling. Mol Cell 2004, 15:813-823.
  • [15]Shi Y, Wang YF, Jayaraman L, Yang H, Massague J, Pavletich NP: Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling. Cell 1998, 94:585-594.
  • [16]Massague J, Wotton D: Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 2000, 19:1745-1754.
  • [17]Massague J: TGFbeta signalling in context. Nat Rev Mol Cell Biol 2012, 13:616-630.
  • [18]Massague J: G1 cell-cycle control and cancer. Nature 2004, 432:298-306.
  • [19]Besson A, Dowdy SF, Roberts JM: CDK inhibitors: cell cycle regulators and beyond. Dev Cell 2008, 14:159-169.
  • [20]Sherr CJ: G1 phase progression: cycling on cue. Cell 1994, 79:551-555.
  • [21]Bates S, Bonetta L, MacAllan D, Parry D, Holder A, Dickson C, Peters G: CDK6 (PLSTIRE) and CDK4 (PSK-J3) are a distinct subset of the cyclin-dependent kinases that associate with cyclin D1. Oncogene 1994, 9:71-79.
  • [22]Dulic V, Lees E, Reed SI: Association of human cyclin E with a periodic G1-S phase protein kinase. Science 1992, 257:1958-1961.
  • [23]Koff A, Giordano A, Desai D, Yamashita K, Harper JW, Elledge S, Nishimoto T, Morgan DO, Franza BR, Roberts JM: Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 1992, 257:1689-1694.
  • [24]Meyerson M, Harlow E: Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol Cell Biol 1994, 14:2077-2086.
  • [25]Matsushime H, Ewen ME, Strom DK, Kato JY, Hanks SK, Roussel MF, Sherr CJ: Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell 1992, 71:323-334.
  • [26]Hannon GJ, Beach D: p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest [see comments]. Nature 1994, 371:257-261.
  • [27]Serrano M, Hannon GJ, Beach D: A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993, 366:704-707.
  • [28]Guan KL, Jenkins CW, Li Y, Nichols MA, Wu X, O'Keefe CL, Matera AG, Xiong Y: Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev 1994, 8:2939-2952.
  • [29]Hirai H, Roussel MF, Kato JY, Ashmun RA, Sherr CJ: Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol Cell Biol 1995, 15:2672-2681.
  • [30]Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ: The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993, 75:805-816.
  • [31]el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B: WAF1, a potential mediator of p53 tumor suppression. Cell 1993, 75:817-825.
  • [32]Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massague J: Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 1994, 78:59-66.
  • [33]Toyoshima H, Hunter T: p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 1994, 78:67-74.
  • [34]Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW, Elledge SJ: p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 1995, 9:650-662.
  • [35]Lee MH, Reynisdottir I, Massague J: Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev 1995, 9:639-649.
  • [36]Sherr CJ, Roberts JM: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999, 13:1501-1512.
  • [37]Xiong Y, Zhang H, Beach D: D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 1992, 71:505-514.
  • [38]Yu ZK, Gervais JL, Zhang H: Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci USA 1998, 95:11324-11329.
  • [39]Massague J: TGFbeta in Cancer. Cell 2008, 134:215-230.
  • [40]Reynisdottir I, Polyak K, Iavarone A, Massague J: Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev 1995, 9:1831-1845.
  • [41]Seoane J, Le HV, Shen L, Anderson SA, Massague J: Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 2004, 117:211-223.
  • [42]Abbas T, Dutta A: p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 2009, 9:400-414.
  • [43]Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL: Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 2011, 11:558-572.
  • [44]Dai M, Al-Odaini AA, Arakelian A, Rabbani SA, Ali S, Lebrun JJ: A novel function for p21Cip1 and acetyltransferase p/CAF as critical transcriptional regulators of TGFbeta-mediated breast cancer cell migration and invasion. Breast Cancer Res 2012, 14:R127. BioMed Central Full Text
  • [45]Agarwal R, Gonzalez-Angulo AM, Myhre S, Carey M, Lee JS, Overgaard J, Alsner J, Stemke-Hale K, Lluch A, Neve RM, Kuo WL, Sorlie T, Sahin A, Valero V, Keyomarsi K, Gray JW, Borresen-Dale AL, Mills GB, Hennessy BT: Integrative analysis of cyclin protein levels identifies cyclin b1 as a classifier and predictor of outcomes in breast cancer. Clin Cancer Res 2009, 15:3654-3662.
  • [46]Ertel A, Dean JL, Rui H, Liu C, Witkiewicz AK, Knudsen KE, Knudsen ES: RB-pathway disruption in breast cancer: differential association with disease subtypes, disease-specific prognosis and therapeutic response. Cell Cycle 2010, 9:4153-4163.
  • [47]Drobnjak M, Osman I, Scher HI, Fazzari M, Cordon-Cardo C: Overexpression of cyclin D1 is associated with metastatic prostate cancer to bone. Clin Cancer Res 2000, 6:1891-1895.
  • [48]Jares P, Fernandez PL, Campo E, Nadal A, Bosch F, Aiza G, Nayach I, Traserra J, Cardesa A: PRAD-1/cyclin D1 gene amplification correlates with messenger RNA overexpression and tumor progression in human laryngeal carcinomas. Cancer Res 1994, 54:4813-4817.
  • [49]Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, Ponomarev V, Gerald WL, Blasberg R, Massagué J: Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 2005, 115:44-55.
  • [50]Lin DI, Barbash O, Kumar KG, Weber JD, Harper JW, Klein-Szanto AJ, Rustgi A, Fuchs SY, Diehl JA: Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex. Mol Cell 2006, 24:355-366.
  • [51]Alt JR, Cleveland JL, Hannink M, Diehl JA: Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev 2000, 14:3102-3114.
  • [52]Neumeister P, Pixley FJ, Xiong Y, Xie H, Wu K, Ashton A, Cammer M, Chan A, Symons M, Stanley ER, Pestell RG: Cyclin D1 governs adhesion and motility of macrophages. Mol Biol Cell 2003, 14:2005-2015.
  • [53]Li Z, Wang C, Jiao X, Lu Y, Fu M, Quong AA, Dye C, Yang J, Dai M, Ju X, Zhang X, Li A, Burbelo P, Stanley ER, Pestell RG: Cyclin D1 regulates cellular migration through the inhibition of thrombospondin 1 and ROCK signaling. Mol Cell Biol 2006, 26:4240-4256.
  • [54]Zhong Z, Yeow WS, Zou C, Wassell R, Wang C, Pestell RG, Quong JN, Quong AA: Cyclin D1/cyclin-dependent kinase 4 interacts with filamin A and affects the migration and invasion potential of breast cancer cells. Cancer Res 2010, 70:2105-2114.
  • [55]Schoumacher M, Goldman RD, Louvard D, Vignjevic DM: Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J Cell Biol 2010, 189:541-556.
  • [56]Weaver AM: Invadopodia: specialized cell structures for cancer invasion. Clin Exp Metastasis 2006, 23:97-105.
  • [57]Lee RJ, Albanese C, Fu M, D'Amico M, Lin B, Watanabe G, Haines GK, Siegel PM, Hung MC, Yarden Y, Horowitz JM, Muller WJ, Pestell RG: Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol Cell Biol 2000, 20:672-683.
  • [58]Yu Q, Geng Y, Sicinski P: Specific protection against breast cancers by cyclin D1 ablation. Nature 2001, 411:1017-1021.
  • [59]Kozar K, Ciemerych MA, Rebel VI, Shigematsu H, Zagozdzon A, Sicinska E, Geng Y, Yu Q, Bhattacharya S, Bronson RT, Akashi K, Sicinski P: Mouse development and cell proliferation in the absence of D-cyclins. Cell 2004, 118:477-491.
  • [60]Arnold A, Papanikolaou A: Cyclin D1 in breast cancer pathogenesis. J Clin Oncol 2005, 23:4215-4224.
  • [61]Fu M, Wang C, Li Z, Sakamaki T, Pestell RG: Minireview: Cyclin D1: normal and abnormal functions. Endocrinology 2004, 145:5439-5447.
  • [62]Santarius T, Shipley J, Brewer D, Stratton MR, Cooper CS: A census of amplified and overexpressed human cancer genes. Nat Rev Cancer 2010, 10:59-64.
  • [63]Matsubayashi H, Sato N, Fukushima N, Yeo CJ, Walter KM, Brune K, Sahin F, Hruban RH, Goggins M: Methylation of cyclin D2 is observed frequently in pancreatic cancer but is also an age-related phenomenon in gastrointestinal tissues. Clin Cancer Res 2003, 9:1446-1452.
  • [64]Evron E, Umbricht CB, Korz D, Raman V, Loeb DM, Niranjan B, Buluwela L, Weitzman SA, Marks J, Sukumar S: Loss of cyclin D2 expression in the majority of breast cancers is associated with promoter hypermethylation. Cancer Res 2001, 61:2782-2787.
  • [65]Padar A, Sathyanarayana UG, Suzuki M, Maruyama R, Hsieh JT, Frenkel EP, Minna JD, Gazdar AF: Inactivation of cyclin D2 gene in prostate cancers by aberrant promoter methylation. Clin Cancer Res 2003, 9:4730-4734.
  • [66]Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV: Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 1994, 369:669-671.
  • [67]Landis MW, Pawlyk BS, Li T, Sicinski P, Hinds PW: Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell 2006, 9:13-22.
  • [68]Yu Q, Sicinska E, Geng Y, Ahnstrom M, Zagozdzon A, Kong Y, Gardner H, Kiyokawa H, Harris LN, Stal O, Sicinski P: Requirement for CDK4 kinase function in breast cancer. Cancer Cell 2006, 9:23-32.
  • [69]Yang C, Ionescu-Tiba V, Burns K, Gadd M, Zukerberg L, Louis DN, Sgroi D, Schmidt EV: The role of the cyclin D1-dependent kinases in ErbB2-mediated breast cancer. Am J Pathol 2004, 164:1031-1038.
  • [70]Russell A, Thompson MA, Hendley J, Trute L, Armes J, Germain D: Cyclin D1 and D3 associate with the SCF complex and are coordinately elevated in breast cancer. Oncogene 1999, 18:1983-1991.
  • [71]Benzeno S, Lu F, Guo M, Barbash O, Zhang F, Herman JG, Klein PS, Rustgi A, Diehl JA: Identification of mutations that disrupt phosphorylation-dependent nuclear export of cyclin D1. Oncogene 2006, 25:6291-6303.
  • [72]Moreno-Bueno G, Rodriguez-Perales S, Sanchez-Estevez C, Hardisson D, Sarrio D, Prat J, Cigudosa JC, Matias-Guiu X, Palacios J: Cyclin D1 gene (CCND1) mutations in endometrial cancer. Oncogene 2003, 22:6115-6118.
  • [73]Kim JK, Diehl JA: Nuclear cyclin D1: an oncogenic driver in human cancer. J Cell Physiol 2009, 220:292-296.
  • [74]Wang C, Li Z, Lu Y, Du R, Katiyar S, Yang J, Fu M, Leader JE, Quong A, Novikoff PM, Pestell RG: Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proc Natl Acad Sci USA 2006, 103:11567-11572.
  • [75]Sakamaki T, Casimiro MC, Ju X, Quong AA, Katiyar S, Liu M, Jiao X, Li A, Zhang X, Lu Y, Wang C, Byers S, Nicholson R, Link T, Shemluck M, Yang J, Fricke ST, Novikoff PM, Papanikolaou A, Arnold A, Albanese C, Pestell R: Cyclin D1 determines mitochondrial function in vivo. Mol Cell Biol 2006, 26:5449-5469.
  • [76]Wang C, Pattabiraman N, Zhou JN, Fu M, Sakamaki T, Albanese C, Li Z, Wu K, Hulit J, Neumeister P, Novikoff PM, Brownlee M, Scherer PE, Jones JG, Whitney KD, Donehower LA, Harris EL, Rohan T, Johns DC, Pestell RG: Cyclin D1 repression of peroxisome proliferator-activated receptor gamma expression and transactivation. Mol Cell Biol 2003, 23:6159-6173.
  • [77]Yasui M, Yamamoto H, Ngan CY, Damdinsuren B, Sugita Y, Fukunaga H, Gu J, Maeda M, Takemasa I, Ikeda M, Fujio Y, Sekimoto M, Matsuura N, Weinstein IB, Monden M: Antisense to cyclin D1 inhibits vascular endothelial growth factor-stimulated growth of vascular endothelial cells: implication of tumor vascularization. Clin Cancer Res 2006, 12:4720-4729.
  • [78]Li Z, Jiao X, Wang C, Ju X, Lu Y, Yuan L, Lisanti MP, Katiyar S, Pestell RG: Cyclin D1 induction of cellular migration requires p27(KIP1). Cancer Res 2006, 66:9986-9994.
  • [79]Jirawatnotai S, Hu Y, Michowski W, Elias JE, Becks L, Bienvenu F, Zagozdzon A, Goswami T, Wang YE, Clark AB, Kunkel TA, van Harn T, Xia B, Correll M, Quackenbush J, Livingston DM, Gygi SP, Sicinski P: A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature 2011, 474:230-234.
  • [80]Alt JR, Gladden AB, Diehl JA: p21(Cip1) Promotes cyclin D1 nuclear accumulation via direct inhibition of nuclear export. J Biol Chem 2002, 277:8517-8523.
  • [81]Li Z, Jiao X, Wang C, Shirley LA, Elsaleh H, Dahl O, Wang M, Soutoglou E, Knudsen ES, Pestell RG: Alternative cyclin D1 splice forms differentially regulate the DNA damage response. Cancer Res 2010, 70:8802-8811.
  • [82]Raderschall E, Bazarov A, Cao J, Lurz R, Smith A, Mann W, Ropers HH, Sedivy JM, Golub EI, Fritz E, Haaf T: Formation of higher-order nuclear Rad51 structures is functionally linked to p21 expression and protection from DNA damage-induced apoptosis. J Cell Sci 2002, 115:153-164.
  文献评价指标  
  下载次数:18次 浏览次数:9次