Cilia | |
Intraflagellar transport complex structure and cargo interactions | |
Esben Lorentzen2  Benjamin D Engel1  Sagar Bhogaraju2  | |
[1] Department of Molecular Structural Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany;Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany | |
关键词: IFT cargo; IFT complex; IFT; Cilium; Intraflagellar transport; | |
Others : 791462 DOI : 10.1186/2046-2530-2-10 |
|
received in 2013-04-09, accepted in 2013-07-05, 发布年份 2013 | |
【 摘 要 】
Intraflagellar transport (IFT) is required for the assembly and maintenance of cilia, as well as the proper function of ciliary motility and signaling. IFT is powered by molecular motors that move along the axonemal microtubules, carrying large complexes of IFT proteins that travel together as so-called trains. IFT complexes likely function as adaptors that mediate interactions between anterograde/retrograde motors and ciliary cargoes, facilitating cargo transport between the base and tip of the cilium. Here, we provide an up-to-date review of IFT complex structure and architecture, and discuss how interactions with cargoes and motors may be achieved.
【 授权许可】
2013 Bhogaraju et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140705013723644.pdf | 754KB | download | |
Figure 1. | 40KB | Image | download |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL: A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci USA 1993, 90:5519-5523.
- [2]Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL: Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 1998, 141:993-1008.
- [3]Piperno G, Mead K: Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella. Proc Natl Acad Sci USA 1997, 94:4457-4462.
- [4]Pazour GJ, Baker SA, Deane JA, Cole DG, Dickert BL, Rosenbaum JL, Witman GB, Besharse JC: The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J Cell Biol 2002, 157:103-113.
- [5]Follit JA, Xu F, Keady BT, Pazour GJ: Characterization of mouse IFT complex B. Cell Motil Cytoskeleton 2009, 66:457-468.
- [6]Blacque OE, Perens EA, Boroevich KA, Inglis PN, Li C, Warner A, Khattra J, Holt RA, Ou G, Mah AK, McKay SJ, Huang P, Swoboda P, Jones SJM, Marra MA, Baillie DL, Moerman DG, Shaham S, Leroux MR: Functional genomics of the cilium, a sensory organelle. Curr Biol 2005, 15:935-941.
- [7]Bacaj T, Lu Y, Shaham S: The conserved proteins CHE-12 and DYF-11 are required for sensory cilium function in Caenorhabditis elegans. Genetics 2008, 178:989-1002.
- [8]Fan ZC, Behal RH, Geimer S, Wang Z, Williamson SM, Zhang H, Cole DG, Qin H: Chlamydomonas IFT70/CrDYF-1 is a core component of IFT particle complex B and is required for flagellar assembly. Mol Biol Cell 2010, 21:2696-2706.
- [9]Kunitomo H, Iino Y: Caenorhabditis elegans DYF-11, an orthologue of mammalian Traf3ip1/MIP-T3, is required for sensory cilia formation. Genes Cells 2008, 13:13-25.
- [10]Wang Z, Fan Z-C, Williamson SM, Qin H: Intraflagellar transport (IFT) protein IFT25 is a phosphoprotein component of IFT complex B and physically interacts with IFT27 in Chlamydomonas. PLoS One 2009, 4:e5384.
- [11]Haycraft CJ, Schafer JC, Zhang Q, Taulman PD, Yoder BK: Identification of CHE-13, a novel intraflagellar transport protein required for cilia formation. Exp Cell Res 2003, 284:249-261.
- [12]Fliegauf M, Benzing T, Omran H: When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol 2007, 8:880-893.
- [13]Davis EE, Zhang Q, Liu Q, Diplas BH, Davey LM, Hartley J, Stoetzel C, Szymanska K, Ramaswami G, Logan CV, Muzny DM, Young AC, Wheeler DA, Cruz P, Morgan M, Lewis LR, Cherukuri P, Maskeri B, Hansen NF, Mullikin JC, Blakesley RW, Bouffard GG, Gyapay G, Rieger S, Tönshoff B, Kern I, Soliman NA, Neuhaus TJ, Swoboda KJ, Kayserili H, et al.: TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat Genet 2011, 43:189-196.
- [14]Arts HH, Bongers EMHF, Mans DA, van Beersum SEC, Oud MM, Bolat E, Spruijt L, Cornelissen EAM, Schuurs-Hoeijmakers JHM, de Leeuw N, Cormier-Daire V, Brunner HG, Knoers NVAM, Roepman R: C14ORF179 encoding IFT43 is mutated in Sensenbrenner syndrome. J Med Genet 2011, 48:390-395.
- [15]Walczak-Sztulpa J, Eggenschwiler J, Osborn D, Brown DA, Emma F, Klingenberg C, Hennekam RC, Torre G, Garshasbi M, Tzschach A, Szczepanska M, Krawczynski M, Zachwieja J, Zwolinska D, Beales PL, Ropers H-H, Latos-Bielenska A, Kuss AW: Cranioectodermal dysplasia, Sensenbrenner syndrome, is a Ciliopathy caused by mutations in the IFT122 Gene. Am J Hum Genet 2010, 86:949-956.
- [16]Cavalcanti DP, Huber C, Le Quan Sang KH, Baujat G, Collins F, Delezoide AL, Dagoneau N, Le Merrer M, Martinovic J, Mello MFS, Vekemans M, Munnich A, Cormier-Daire V: Mutation in IFT80 in a fetus with the phenotype of Verma-Naumoff provides molecular evidence for Jeune-Verma-Naumoff dysplasia spectrum. J Med Genet 2011, 48:88-92.
- [17]Perrault I, Saunier S, Hanein S, Filhol E, Bizet A, Collins F, Salih M, Silva E, Baudouin V, Oud M, Shannon N, Le Merrer M, Pietrement C, Beales P, Arts H, Munnich A, Kaplan J, Antignac C, Cormier Daire V, Rozet JM: Mainzer-Saldino syndrome is a ciliopathy caused by mutations in the IFT140 gene. Cilia 2012, 1(Suppl 1):O28.
- [18]Rosenbaum JL, Witman GB: Intraflagellar transport. Nat Rev Mol Cell Biol 2002, 3:813-825.
- [19]Beales PL, Bland E, Tobin JL, Bacchelli C, Tuysuz B, Hill J, Rix S, Pearson CG, Kai M, Hartley J: IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat Genet 2007, 39:727-729.
- [20]Bredrup C, Saunier S, Oud MM, Fiskerstrand T, Hoischen A, Brackman D, Leh SM, Midtbø M, Filhol E, Bole-Feysot C, Nitschké P, Gilissen C, Haugen OH, Sanders J-SF, Stolte-Dijkstra I, Mans DA, Steenbergen EJ, Hamel BCJ, Matignon M, Pfundt R, Jeanpierre C, Boman H, Rødahl E, Veltman JA, Knappskog PM, Knoers NVAM, Roepman R, Arts HH: Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. Am J Hum Genet 2011, 89:634-643.
- [21]Gilissen C, Arts HH, Hoischen A, Spruijt L, Mans DA, Arts P, van Lier B, Steehouwer M, van Reeuwijk J, Kant SG, Roepman R, Knoers NVAM, Veltman JA, Brunner HG: Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am J Hum Genet 2010, 87:418-423.
- [22]Badano JL, Mitsuma N, Beales PL: The Ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 2006, 7:125-148.
- [23]Ou G, Koga M, Blacque OE, Murayama T, Ohshima Y, Schafer JC, Li C, Yoder BK, Leroux MR, Scholey JM: Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles. Mol Biol Cell 2007, 18:1554-1569.
- [24]Hou Y, Qin H, Follit JA, Pazour GJ, Rosenbaum JL, Witman GB: Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella. J Cell Biol 2007, 176:653-665.
- [25]Lucker BF, Miller MS, Dziedzic SA, Blackmarr PT, Cole DG: Direct interactions of intraflagellar transport complex B proteins IFT88, IFT52, and IFT46. J Biol Chem 2010, 285:21508-21518.
- [26]Richey EA, Qin H: Dissecting the sequential assembly and localization of Intraflagellar transport particle complex B in Chlamydomonas. PLoS One 2012, 7:e43118.
- [27]Kobayashi T, Gengyo-Ando K, Ishihara T, Katsura I, Mitani S: IFT-81 and IFT-74 are required for intraflagellar transport in C. elegans. Genes Cells 2007, 12:593-602.
- [28]Brazelton WJ, Amundsen CD, Silflow CD, Lefebvre PA: The bld1 mutation identifies the Chlamydomonas OSM-6 homolog as a gene required for flagellar assembly. Curr Biol 2001, 11:1591-1594.
- [29]Adhiambo C, Blisnick T, Toutirais G, Delannoy E, Bastin P: A novel function for the atypical small G protein Rab-like 5 in the assembly of the trypanosome flagellum. J Cell Sci 2009, 122:834-841.
- [30]Pazour G, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG: Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene Tg737, are required for assembly of cilia and flagella. J Cell Biol 2000, 151:709-718.
- [31]Tsujikawa M, Malicki J: Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons. Neuron 2004, 42:703-716.
- [32]Pigino G, Geimer S, Lanzavecchia S, Paccagnini E, Cantele F, Diener DR, Rosenbaum JL, Lupetti P: Electron-tomographic analysis of intraflagellar transport particle trains in situ. J Cell Biol 2009, 187:135-148.
- [33]Bhogaraju S, Taschner M, Morawetz M, Basquin C, Lorentzen E: Crystal structure of the intraflagellar transport complex 25/27. EMBO J 2011, 30:1907-1918.
- [34]Lucker BF, Behal RH, Qin H, Siron LC, Taggart WD, Rosenbaum JL, Cole DG: Characterization of the intraflagellar transport complex B core direct interaction of the IFT81 and IFT74/72 subunits. J Biol Chem 2005, 280:27688-27696.
- [35]Taschner M, Bhogaraju S, Vetter M, Morawetz M, Lorentzen E: Biochemical mapping of interactions within the intraflagellar transport (IFT) B core complex. J Biol Chem 2011, 286:26344-26352.
- [36]Cole DG: The intraflagellar transport machinery of Chlamydomonas reinhardtii. Traffic 2003, 4:435-442.
- [37]Jékely G, Arendt D: Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. Bioessays 2006, 28:191-198.
- [38]van Dam TJP, Townsend MJ, Turk M, Schlessinger A, Sali A, Field MC, Huynen MA: Evolution of modular intraflagellar transport from a coatomer-like progenitor. Proc Natl Acad Sci USA 2013, 110:6943-6948.
- [39]Taschner M, Bhogaraju S, Lorentzen E: Architecture and function of IFT complex proteins in ciliogenesis. Differentiation 2012, 83:S12-S22.
- [40]Soding J, Biegert A, Lupas AN: The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 2005, 33(Web Server):W244-W248.
- [41]Ahmed NT, Gao C, Lucker BF, Cole DG, Mitchell DR: ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery. J Cell Biol 2008, 183:313-322.
- [42]Ahmed NT, Mitchell DR: ODA16p, a Chlamydomonas flagellar protein needed for dynein assembly. Mol Biol Cell 2005, 16:5004-5012.
- [43]Keady BT, Le YZ, Pazour GJ: IFT20 is required for opsin trafficking and photoreceptor outer segment development. Mol Biol Cell 2011, 22:921-930.
- [44]Omori Y, Zhao C, Saras A, Mukhopadhyay S, Kim W, Furukawa T, Sengupta P, Veraksa A, Malicki J: Elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nat Cell Biol 2008, 10:437-444.
- [45]Baker SA, Freeman K, Luby-Phelps K, Pazour GJ, Besharse JC: IFT20 links Kinesin II with a mammalian intraflagellar transport complex that is conserved in motile flagella and sensory cilia. J Biol Chem 2003, 278:34211-34218.
- [46]Keady BT, Samtani R, Tobita K, Tsuchya M, San Agustin JT, Follit JA, Jonassen JA, Subramanian R, Lo CW, Pazour GJ: IFT25 links the signal-dependent movement of hedgehog components to intraflagellar transport. Dev Cell 2012, 22:940-951.
- [47]Emanuelsson O: Predicting protein subcellular localisation from amino acid sequence information. Brief Bioinform 2002, 3:361-376.
- [48]Gilula NB, Satir P: The ciliary necklace: a ciliary membrane specialization. J Cell Biol 1972, 53:494-509.
- [49]Reiter JF, Blacque OE, Leroux MR: The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep 2012, 13:608-618.
- [50]Breslow DK, Nachury MV: Primary cilia: how to keep the riff-raff in the plasma membrane. Curr Biol 2011, 21:R434-R436.
- [51]Kee HL, Dishinger JF, Lynne Blasius T, Liu C-J, Margolis B, Verhey KJ: A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nat Cell Biol 2012, 14:431-437.
- [52]Francis SS, Sfakianos J, Lo B, Mellman I: A hierarchy of signals regulates entry of membrane proteins into the ciliary membrane domain in epithelial cells. J Cell Biol 2011, 193:219-233.
- [53]Geimer S, Melkonian M: The ultrastructure of the Chlamydomonas reinhardtii basal apparatus: identification of an early marker of radial asymmetry inherent in the basal body. J Cell Sci 2004, 117:2663-2674.
- [54]Craige B, Tsao C-C, Diener DR, Hou Y, Lechtreck K-F, Rosenbaum JL, Witman GB: CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J Cell Biol 2010, 190:927-940.
- [55]Williams CL, Li C, Kida K, Inglis PN, Mohan S, Semenec L, Bialas NJ, Stupay RM, Chen N, Blacque OE, Yoder BK, Leroux MR: MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J Cell Biol 2011, 192:1023-1041.
- [56]Hu Q, Milenkovic L, Jin H, Scott MP, Nachury MV, Spiliotis ET, Nelson WJ: A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 2010, 329:436-439.
- [57]Pazour GJ, Agrin N, Leszyk J, Witman GB: Proteomic analysis of a eukaryotic cilium. J Cell Biol 2005, 170:103-113.
- [58]Pazour GJ, Bloodgood RA: Targeting proteins to the ciliary membrane. Curr Top Dev Biol 2008, 85:115-149.
- [59]Dwyer ND, Adler CE, Crump JG, L'Etoile ND, Bargmann CI: Polarized dendritic transport and the AP-1 μ1 clathrin adaptor UNC-101 localize odorant receptors to olfactory cilia. Neuron 2001, 31:277-287.
- [60]Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DYR, Reiter JF: Vertebrate Smoothened functions at the primary cilium. Nature 2005, 437:1018-1021.
- [61]Palczewski K, Kumasaka T, Hori T, Behnke C, Motoshima H, Fox BA, Trong IL, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M: Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000, 289:733-734.
- [62]Berbari NF, Johnson AD, Lewis JS, Askwith CC, Mykytyn K: Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. Mol Biol Cell 2008, 19:1540-1547.
- [63]Nagata A, Hamamoto A, Horikawa M, Yoshimura K, Takeda S, Saito Y: Characterization of ciliary targeting sequence of rat melanin-concentrating hormone receptor 1. Gen Comp Endocrinol 2013, 188:159-165.
- [64]Mukhopadhyay S, Wen X, Ratti N, Loktev A, Rangell L: The ciliary G-protein-coupled receptor Gpr161 negatively regulates the sonic hedgehog pathway via cAMP signaling. Cell 2013, 152:210-223.
- [65]Tam BM, Moritz OL, Hurd LB, Papermaster DS: Identification of an outer segment targeting signal in the COOH terminus of rhodopsin using transgenic Xenopus laevis. J Cell Biol 2000, 151:1369-1380.
- [66]Sung CH, Makino C, Baylor D, Nathans J: A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. J Neurosci 1994, 14:5818-5833.
- [67]Geng L, Okuhara D, Yu Z, Tian X, Cai Y, Shibazaki S, Somlo S: Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J Cell Sci 2006, 119:1383-1395.
- [68]Ward HH, Brown-Glaberman U, Wang J, Morita Y, Alper SL, Bedrick EJ, Gattone VH, Deretic D, Wandinger-Ness A: A conserved signal and GTPase complex are required for the ciliary transport of polycystin-1. Mol Biol Cell 2011, 22:3289-3305.
- [69]Hao L, Thein M, Brust-Mascher I, Civelekoglu-Scholey G, Lu Y, Acar S, Prevo B, Shaham S, Scholey JM: Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments. Nat Cell Biol 2011, 13:790-798.
- [70]Scholey JM: Kinesin-2 motors transport IFT-particles, dyneins and tubulin subunits to the tips of Caenorhabditis elegans sensory cilia: relevance to vision research? Vision Res 2012, 75:44-52.
- [71]Dishinger JF, Kee HL, Jenkins PM, Fan S, Hurd TW, Hammond JW, Truong YN-T, Margolis B, Martens JR, Verhey KJ: Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-β2 and RanGTP. Nat Cell Biol 2010, 12:703-710.
- [72]Fan S, Whiteman EL, Hurd TW, McIntyre JC, Dishinger JF, Liu CJ, Martens JR, Verhey KJ, Sajjan U, Margolis B: Induction of Ran GTP drives ciliogenesis. Mol Biol Cell 2011, 22:4539-4548.
- [73]Hurd TW, Fan S, Margolis BL: Localization of retinitis pigmentosa 2 to cilia is regulated by Importin 2. J Cell Sci 2011, 124:718-726.
- [74]Wolfrum U, Schmitt A: Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells. Cell Motil Cytoskeleton 2000, 46:95-107.
- [75]Trivedi D, Colin E, Louie CM, Williams DS: Live-cell imaging evidence for the ciliary transport of Rod photoreceptor Opsin by Heterotrimeric Kinesin-2. J Neurosci 2012, 32:10587-10593.
- [76]Marszalek JR, Liu X, Roberts EA, Chui D, Marth JD, Williams DS, Goldstein LSB: Genetic evidence for selective transport of Opsin and Arrestin by Kinesin-II in mammalian photoreceptors. Cell 2000, 102:175-187.
- [77]Qin H, Burnette DT, Bae Y-K, Forscher P, Barr MM, Rosenbaum JL: Intraflagellar transport is required for the vectorial movement of TRPV channels in the ciliary membrane. Curr Biol 2005, 15:1695-1699.
- [78]Huang K, Diener DR, Mitchell A, Pazour GJ, Witman GB, Rosenbaum JL: Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella. J Cell Biol 2007, 179:501-514.
- [79]Shih SM, Engel BD, Kocabas F, Bilyard T, Gennerich A, Marshall WF, Yildiz A: Intraflagellar transport drives flagellar surface motility. eLife 2013, 2:e00744.
- [80]Mukhopadhyay S, Wen X, Chih B, Nelson CD, Lane WS, Scales SJ, Jackson PK: TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes Dev 2010, 24:2180-2193.
- [81]Liem KF, Ashe A, He M, Satir P, Moran J, Beier D, Wicking C, Anderson KV: The IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking. J Cell Biol 2012, 197:789-800.
- [82]Lechtreck K-F, Johnson EC, Sakai T, Cochran D, Ballif BA, Rush J, Pazour GJ, Ikebe M, Witman GB: The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J Cell Biol 2009, 187:1117-1132.
- [83]Jin H, White SR, Shida T, Schulz S, Aguiar M, Gygi SP, Bazan JF, Nachury MV: The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 2010, 141:1208-1219.
- [84]Berbari NF, Lewis JS, Bishop GA, Askwith CC, Mykytyn K: Bardet–Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc Natl Acad Sci USA 2008, 105:4242-4246.
- [85]Zhang Q, Seo S, Bugge K, Stone EM, Sheffield VC: BBS proteins interact genetically with the IFT pathway to influence SHH-related phenotypes. Hum Mol Genet 2012, 21:1945-1953.
- [86]Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peränen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC, Jackson PK: A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 2007, 129:1201-1213.
- [87]Blacque OE, Michael RJ, Chunmei L, Jonathan M, Leroux MR: Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. Genes Dev 2004, 18:1630-1642.
- [88]ter Haar E, Harrison SC, Kirchhausen T: Peptide-in-groove interactions link target proteins to the β-propeller of clathrin. Proc Natl Acad Sci USA 2000, 97:1096-1100.
- [89]Qin H, Diener DR, Geimer S, Cole DG, Rosenbaum JL: Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the cell body. J Cell Biol 2004, 164:255-266.
- [90]Bhowmick R, Li M, Sun J, Baker SA, Insinna C, Besharse JC: Photoreceptor IFT complexes containing chaperones, guanylyl cyclase 1 and rhodopsin. Traffic 2009, 10:648-663.
- [91]Snow JJ, Ou G, Gunnarson AL, Walker MRS, Zhou HM, Brust-Mascher I, Scholey JM: Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat Cell Biol 2004, 6:1109-1113.
- [92]Pan X, Ou G, Civelekoglu-Scholey G, Blacque OE, Endres NF, Tao L, Mogilner A, Leroux MR, Vale RD, Scholey JM: Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors. J Cell Biol 2006, 174:1035-1045.
- [93]Ou G, Blacque OE, Snow JJ, Leroux MR, Scholey JM: Functional coordination of intraflagellar transport motors. Nature 2005, 436:583-587.
- [94]Imanishi M, Endres NF, Gennerich A, Vale RD: Autoinhibition regulates the motility of the C. elegans intraflagellar transport motor OSM-3. J Cell Biol 2006, 174:931-937.
- [95]Pathak N, Obara T, Mangos S, Liu Y, Drummond IA: The Zebrafish fleer gene encodes an essential regulator of Cilia tubulin polyglutamylation. Mol Biol Cell 2007, 18:4353-4364.
- [96]Ikegami K, Heier RL, Taruishi M, Takagi H, Mukai M, Shimma S, Taira S, Hatanaka K, Morone N, Yao I, Campbell PK, Yuasa S, Janke C, MacGregor GR, Setou M: Loss of tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc Natl Acad Sci USA 2007, 104:3213-3218.
- [97]Kubo T, Yanagisawa H-A, Yagi T, Hirono M, Kamiya R: Tubulin polyglutamylation regulates axonemal motility by modulating activities of inner-arm dyneins. Curr Biol 2010, 20:441-445.
- [98]Kubo T, Yagi T, Kamiya R: Tubulin polyglutamylation regulates flagellar motility by controlling a specific inner-arm dynein that interacts with the dynein regulatory complex. Cytoskeleton 2012, 69:1059-1068.
- [99]Santagata S, Boggon TJ, Baird CL, Gomez CA, Zhao J, SHan WS, Myszka DG, Shapiro L: G-Protein signaling through tubby proteins. Science 2001, 292:2041-2050.
- [100]Mukhopadhyay S, Jackson PK: Cilia, tubby mice, and obesity. Cilia 2013, 2:1.
- [101]Iomini C, Babaev-Khaimov V, Sassaroli M, Piperno G: Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases. J Cell Biol 2001, 153:13-24.
- [102]Krock BL, Perkins BD: The intraflagellar transport protein IFT57 is required for cilia maintenance and regulates IFT-particle-kinesin-II dissociation in vertebrate photoreceptors. J Cell Sci 2008, 121:1907-1915.
- [103]Engel BD, Ludington WB, Marshall WF: Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. J Cell Biol 2009, 187:81-89.
- [104]Engel BD, Lechtreck K-F, Sakai T, Ikebe M, Witman GB, Marshall WF: Total internal reflection fluorescence (TIRF) microscopy of chlamydomonas flagella. Methods Cell Biol 2009, 93:157-177.
- [105]Lechtreck KF: In vivo imaging of IFT in Chlamydomonas flagella. Methods Enzymol 2013, 524:265-284.
- [106]Signor D, Wedaman KP, Orozco JT, Dwyer ND, Bargmann CI, Rose LS, Scholey JM: Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans. J Cell Biol 1999, 147:519-530.
- [107]Pedersen LB, Geimer S, Rosenbaum JL: Dissecting the molecular mechanisms of intraflagellar transport in chlamydomonas. Curr Biol 2006, 16:450-459.
- [108]Williamson SM, Silva DA, Richey E, Qin H: Probing the role of IFT particle complex A and B in flagellar entry and exit of IFT-dynein in Chlamydomonas. Protoplasma 2012, 249:851-856.
- [109]Tsao CC, Gorovsky MA: Different effects of tetrahymena IFT172 domains on anterograde and retrograde intraflagellar transport. Mol Biol Cell 2008, 19:1450-1461.
- [110]Pedersen LB, Miller MS, Geimer S, Jeffery LM, Rosenbaum JL, Cole DG: Chlamydomonas IFT172 is encoded by FLA11, interacts with CrEB1, and regulates IFT at the flagellar tip. Curr Biol 2005, 15:262-266.
- [111]Pedersen LB, Geimer S, Sloboda RD, Rosenbaum JL: The microtubule plus end-tracking protein EB1 is localized to the flagellar tip and basal bodies in Chlamydomonas reinhardtii. Curr Biol 2003, 13:1969-1974.
- [112]Engel BD, Ishikawa H, Wemmer KA, Geimer S, Wakabayashi K-I, Hirono M, Craige B, Pazour GJ, Witman GB, Kamiya R, Marshall WF: The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function. J Cell Biol 2012, 199:151-167.
- [113]Wei Q, Zhang Y, Li Y, Zhang Q, Ling K, Hu J: The BBSome controls IFT assembly and turnaround in cilia. Nat Cell Biol 2012, 14:950-957.
- [114]Lechtreck KF, Brown JM, Sampaio JL, Craft JM, Shevchenko A, Evans JE, Witman GB: Cycling of the signaling protein phospholipase D through cilia requires the BBSome only for the export phase. J Cell Biol 2013, 201:249-261.
- [115]Domire JS, Green JA, Lee KG, Johnson AD, Askwith CC, Mykytyn K: Dopamine receptor 1 localizes to neuronal cilia in a dynamic process that requires the Bardet-Biedl syndrome proteins. Cell Mol Life Sci 2010, 68:2951-2960.
- [116]Seo S, Zhang Q, Bugge K, Breslow DK, Searby CC, Nachury MV, Sheffield VC: A novel protein LZTFL1 regulates ciliary trafficking of the BBSome and Smoothened. PLoS Genet 2011, 7:e1002358.
- [117]Zhang Q, Nishimura D, Seo S, Vogel T, Morgan DA, Searby C, Bugge K, Stone EM, Rahmouni K, Sheffield VC: Bardet-Biedl syndrome 3 (Bbs3) knockout mouse model reveals common BBS-associated phenotypes and Bbs3 unique phenotypes. Proc Natl Acad Sci USA 2011, 108:20678-20683.
- [118]Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain P-O, Han J-DJ, Chesneau A, Hao T, Goldberg DS, Li N, Martinez M, Rual J-F, Lamesch P, Xu L, Tewari M, Wong SL, Zhang LV, Berriz GF, Jacotot L, Vaglio P, Reboul J, Hirozane-Kishikawa T, Li Q, Gabel HW, Elewa A, Baumgartner B, Rose DJ, Yu H, et al.: A map of the interactome network of the metazoan C. elegans. Science 2004, 303:540-543.