Journal of Experimental & Clinical Cancer Research | |
MiR-203 down-regulates Rap1A and suppresses cell proliferation, adhesion and invasion in prostate cancer | |
Denglong Wu1  Shengsong Huang1  Hao Wang2  Cuidong Bian1  Jun Xiang1  | |
[1] Department of Urology, Tongji Hospital, Tongji University School of Medicine, NO 389 Xinchun road, Shanghai 200065, China;The Experimental Center of Basic Medical, Shanghai Medical College, Fudan University, Shanghai 200032, China | |
关键词: Cell invasion; Cell adhesion; Cell proliferation; Rap1A; Prostate cancer; miR-203; | |
Others : 1133393 DOI : 10.1186/s13046-015-0125-x |
|
received in 2014-10-30, accepted in 2015-01-09, 发布年份 2015 | |
【 摘 要 】
Objective
Evidence supports an important role for miR-203 in the regulation of the proliferation, migration and invasion of prostate cancer (PCa) cells. However, the exact mechanisms of miR-203 in PCa are not entirely clear.
Methods
We examined the expression of miR-203 in prostate cancer tissues, adjacent normal tissues, PCa cell lines and normal prostate epithelial cells by qRT-PCR. Then, the effects of miR-203 or Rap1A on proliferation, adhesion and invasion of PCa cells were assayed using CKK-8, adhesion analysis, and transwell invasion assays. Luciferase reporter assay was performed to assess miR-203 binding to Rap1A mRNA. Tumor growth was assessed by subcutaneous inoculation of cells into BALB/c nude mice.
Results
Here, we confirmed that the expression of miR-203 was significantly downregulated in prostate cancer specimens compared with matched adjacent normal prostate specimens. Mechanistic dissection revealed that miR-203 mediated cell proliferation, adhesion and invasion in vitro, and tumor growth in vivo, as evidenced by reduced RAC1, p-PAK1, and p-MEK1 expression. In addition, we identified Rap1A as a direct target suppressed by miR-203, and there was an inverse relationship between the expression of miR-203 and Rap1A in PCa. Knockdown of Rap1A phenocopied the effects of miR-203 on PCa cell growth and invasion. Furthermore, Rap1A over-expression in PCa cells partially reversed the effects of miR-203-expression on cell adhesion and invasion.
Conclusions
These findings provide further evidence that a crucial role for miR-203 in inhibiting metastasis of PCa through the suppression of Rap1A expression.
【 授权许可】
2015 Xiang et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150304143719773.pdf | 2053KB | download | |
Figure 6. | 29KB | Image | download |
Figure 5. | 32KB | Image | download |
Figure 4. | 81KB | Image | download |
Figure 3. | 46KB | Image | download |
Figure 2. | 60KB | Image | download |
Figure 1. | 24KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin 2011, 61(2):69-90.
- [2]Loblaw DA, Virgo KS, Nam R, Somerfield MR, Ben-Josef E, Mendelson DS, et al.: Initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer: 2006 update of an American Society of Clinical Oncology practice guideline. J Clin Oncol 2007, 25(12):1596-605.
- [3]Chang SS: Treatment options for hormone-refractory prostate cancer. Rev Urol 2007, 9(Suppl 2):S13-8.
- [4]Lin B, Ferguson C, White JT, Wang S, Vessella R, True LD, et al.: Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res 1999, 59(17):4180-4.
- [5]Pignon JC, Koopmansch B, Nolens G, Delacroix L, Waltregny D, Winkler R: Androgen receptor controls EGFR and ERBB2 gene expression at different levels in prostate cancer cell lines. Cancer Res 2009, 69(7):2941-9.
- [6]Song H, Zhang B, Watson MA, Humphrey PA, Lim H, Milbrandt J: Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis. Oncogene 2009, 28(37):3307-19.
- [7]Xiang YZ, Xiong H, Cui ZL, Jiang SB, Xia QH, Zhao Y, et al.: The association between metabolic syndrome and the risk of prostate cancer, high-grade prostate cancer, advanced prostate cancer, prostate cancer-specific mortality and biochemical recurrence. J Exp Clin Cancer Res 2013, 32:9. BioMed Central Full Text
- [8]Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120(1):15-20.
- [9]Krol J, Loedige I, Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010, 11(9):597-610.
- [10]Malone CD, Hannon GJ: Small RNAs as guardians of the genome. Cell 2009, 136(4):656-68.
- [11]Kurashige J, Kamohara H, Watanabe M, Hiyoshi Y, Iwatsuki M, Tanaka Y, et al.: MicroRNA-200b regulates cell proliferation, invasion, and migration by directly targeting ZEB2 in gastric carcinoma. Ann Surg Oncol 2012, 19(Suppl 3):S656-64.
- [12]Frankel LB, Lund AH: MicroRNA regulation of autophagy. Carcinogenesis 2012, 33(11):2018-25.
- [13]Ferraro A, Kontos CK, Boni T, Bantounas I, Siakouli D, Kosmidou V, et al.: Epigenetic regulation of miR-21 in colorectal cancer: ITGB4 as a novel miR-21 target and a three-gene network (miR-21-ITGBeta4-PDCD4) as predictor of metastatic tumor potential. Epigenetics 2014, 9(1):129-41.
- [14]Ma R, Jiang T, Kang X: Circulating microRNAs in cancer: origin, function and application. J Exp Clin Cancer Res 2012, 31:38. BioMed Central Full Text
- [15]Chen Y, Zaman MS, Deng G, Majid S, Saini S, Liu J, et al.: MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev Res (Phila) 2011, 4(1):76-86.
- [16]Sun D, Lee YS, Malhotra A, Kim HK, Matecic M, Evans C, et al.: miR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res 2011, 71(4):1313-24.
- [17]Ostling P, Leivonen SK, Aakula A, Kohonen P, Makela R, Hagman Z, et al.: Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells. Cancer Res 2011, 71(5):1956-67.
- [18]Pang Y, Young CY, Yuan H: MicroRNAs and prostate cancer. Acta Biochim Biophys Sin (Shanghai) 2010, 42(6):363-9.
- [19]Shen J, Hruby GW, McKiernan JM, Gurvich I, Lipsky MJ, Benson MC, et al.: Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer. Prostate 2012, 72(13):1469-77.
- [20]He JH, Zhang JZ, Han ZP, Wang L, Lv Y, Li YG: Reciprocal regulation of PCGEM1 and miR-145 promote proliferation of LNCaP prostate cancer cells. J Exp Clin Cancer Res 2014, 33(1):72. BioMed Central Full Text
- [21]Wang C, Wang X, Liang H, Wang T, Yan X, Cao M, et al.: miR-203 inhibits cell proliferation and migration of lung cancer cells by targeting PKCalpha. PLoS One 2013, 8(9):e73985.
- [22]Dontula R, Dinasarapu A, Chetty C, Pannuru P, Herbert E, Ozer H, et al.: MicroRNA 203 modulates glioma cell migration via Robo1/ERK/MMP-9 Signaling. Genes Cancer 2013, 4(7–8):285-96.
- [23]Li Y, Yuan Y, Tao K, Wang X, Xiao Q, Huang Z, et al.: Inhibition of BCR/ABL protein expression by miR-203 sensitizes for imatinib mesylate. PLoS One 2013, 8(4):e61858.
- [24]Yin J, Zheng G, Jia X, Zhang Z, Zhang W, Song Y, et al.: A Bmi1-miRNAs cross-talk modulates chemotherapy response to 5-fluorouracil in breast cancer cells. PLoS One 2013, 8(9):e73268.
- [25]Yi R, Poy MN, Stoffel M, Fuchs E: A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 2008, 452(7184):225-9.
- [26]Ru P, Steele R, Hsueh EC, Ray RB: Anti-miR-203 upregulates SOCS3 expression in breast cancer cells and enhances cisplatin chemosensitivity. Genes Cancer 2011, 2(7):720-7.
- [27]Bueno MJ, Perez DCI, Gomez DCM, Santos J, Calin GA, Cigudosa JC, et al.: Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell 2008, 13(6):496-506.
- [28]Viticchie G, Lena AM, Latina A, Formosa A, Gregersen LH, Lund AH, et al.: MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines. Cell Cycle 2011, 10(7):1121-31.
- [29]Saini S, Majid S, Yamamura S, Tabatabai L, Suh SO, Shahryari V, et al.: Regulatory role of mir-203 in prostate cancer progression and metastasis. Clin Cancer Res 2011, 17(16):5287-98.
- [30]Boll K, Reiche K, Kasack K, Morbt N, Kretzschmar AK, Tomm JM, et al.: MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene 2013, 32(3):277-85.
- [31]Kawata M, Matsui Y, Kondo J, Hishida T, Teranishi Y, Takai Y: A novel small molecular weight GTP-binding protein with the same putative effector domain as the ras proteins in bovine brain membranes. Purification, determination of primary structure, and characterization. J Biol Chem 1988, 263(35):18965-71.
- [32]Katagiri K, Maeda A, Shimonaka M, Kinashi T: RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat Immunol 2003, 4(8):741-8.
- [33]Bos JL: Linking Rap to cell adhesion. Curr Opin Cell Biol 2005, 17(2):123-8.
- [34]Fujita H, Fukuhara S, Sakurai A, Yamagishi A, Kamioka Y, Nakaoka Y, et al.: Local activation of Rap1 contributes to directional vascular endothelial cell migration accompanied by extension of microtubules on which RAPL, a Rap1-associating molecule, localizes. J Biol Chem 2005, 280(6):5022-31.
- [35]Pizon V, Baldacci G: Rap1A protein interferes with various MAP kinase activating pathways in skeletal myogenic cells. Oncogene 2000, 19(52):6074-81.
- [36]Du L, Subauste MC, DeSevo C, Zhao Z, Baker M, Borkowski R, et al.: miR-337-3p and its targets STAT3 and RAP1A modulate taxane sensitivity in non-small cell lung cancers. PLoS One 2012, 7(6):e39167.
- [37]Bailey CL, Kelly P, Casey PJ: Activation of Rap1 promotes prostate cancer metastasis. Cancer Res 2009, 69(12):4962-8.
- [38]Koontongkaew S: The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J Cancer 2013, 4(1):66-83.
- [39]Bendas G, Borsig L: Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int J Cell Biol 2012, 2012:676731.