Cancer Cell International | |
Wnt5a promotes migration of human osteosarcoma cells by triggering a phosphatidylinositol-3 kinase/Akt signals | |
Neng Wang1  Xinnan Bao1  Lianghua Ding1  Xiaoliang Sun1  Shuanghua He1  Ailiang Zhang1  | |
[1] Department of Orthopaedics, Changzhou No. 1 People’s Hospital, Changzhou, Jiangsu 213003, PR China | |
关键词: Migration; Osteosarcoma; Akt; PI3K; Wnt5a; | |
Others : 792336 DOI : 10.1186/1475-2867-14-15 |
|
received in 2013-07-10, accepted in 2014-02-07, 发布年份 2014 | |
【 摘 要 】
Wnt5a is classified as a non-transforming Wnt family member and plays complicated roles in oncogenesis and cancer metastasis. However, Wnt5a signaling in osteosarcoma progression remains poorly defined. In this study, we found that Wnt5a stimulated the migration of human osteosarcoma cells (MG-63), with the maximal effect at 100 ng/ml, via enhancing phosphorylation of phosphatidylinositol-3 kinase (PI3K)/Akt. PI3K and Akt showed visible signs of basal phosphorylation and elevated phosphorylation at 15 min after stimulation with Wnt5a. Pharmaceutical inhibition of PI3K with LY294002 significantly blocked the Wnt5a-induced activation of Akt (p-Ser473) and decreased Wnt5a-induced cell migration. Akt siRNA remarkably inhibited Wnt5a-induced cell migration. Additionally, Wnt5a does not alter the total expression and phosphorylation of β-catenin in MG-63 cells. Taken together, we demonstrated for the first time that Wnt5a promoted osteosarcoma cell migration via the PI3K/Akt signaling pathway. These findings could provide a rationale for designing new therapy targeting osteosarcoma metastasis.
【 授权许可】
2014 Zhang et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140705030222147.pdf | 788KB | download | |
Figure 5. | 44KB | Image | download |
Figure 4. | 39KB | Image | download |
Figure 3. | 49KB | Image | download |
Figure 2. | 43KB | Image | download |
Figure 1. | 75KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Marulanda GA, Henderson ER, Johnson DA, Letson GD, Cheong D: Orthopedic surgery options for the treatment of primary osteosarcoma. Cancer Control 2008, 15(1):13-20.
- [2]Mirabello L, Troisi RJ, Savage SA: Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer 2009, 115(7):1531-1543.
- [3]Logan CY, Nusse R: The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004, 20:781-810.
- [4]Widelitz R: Wnt signaling through canonical and non-canonical pathways: recent progress. Growth Factors 2005, 23(2):111-116.
- [5]Klaus A, Birchmeier W: Wnt signalling and its impact on development and cancer. Nat Rev Cancer 2008, 8(5):387-398.
- [6]Moon RT, Campbell RM, Christian JL, McGrew LL, Shih J, Fraser S: Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development 1993, 119(1):97-111.
- [7]Wallingford JB, Rowning BA, Vogeli KM, Rothbacher U, Fraser SE, Harland RM: Dishevelled controls cell polarity during Xenopus gastrulation. Nature 2000, 405(6782):81-85.
- [8]Heisenberg CP, Tada M, Rauch GJ, Saude L, Concha ML, Geisler R, Stemple DL, Smith JC, Wilson SW: Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 2000, 405(6782):76-81.
- [9]Tada M, Smith JC: Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 2000, 127(10):2227-2238.
- [10]Veeman MT, Axelrod JD, Moon RT: A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 2003, 5(3):367-377.
- [11]Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT: The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 2000, 16(7):279-283.
- [12]Almeida M, Han L, Bellido T, Manolagas SC, Kousteni S: Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J Biol Chem 2005, 280(50):41342-41351.
- [13]Yamanaka H, Moriguchi T, Masuyama N, Kusakabe M, Hanafusa H, Takada R, Takada S, Nishida E: JNK functions in the non-canonical Wnt pathway to regulate convergent extension movements in vertebrates. EMBO Rep 2002, 3(1):69-75.
- [14]Kawasaki A, Torii K, Yamashita Y, Nishizawa K, Kanekura K, Katada M, Ito M, Nishimoto I, Terashita K, Aiso S, et al.: Wnt5a promotes adhesion of human dermal fibroblasts by triggering a phosphatidylinositol-3 kinase/Akt signal. Cell Signal 2007, 19(12):2498-2506.
- [15]Datta SR, Brunet A, Greenberg ME: Cellular survival: a play in three Akts. Genes Dev 1999, 13(22):2905-2927.
- [16]Zhang A, Zhang J, Sun P, Yao C, Su C, Sui T, Huang H, Cao X, Ge Y: EIF2alpha and caspase-12 activation are involved in oxygen-glucose-serum deprivation/restoration-induced apoptosis of spinal cord astrocytes. Neurosci Lett 2010, 478(1):32-36.
- [17]Mikels AJ, Nusse R: Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 2006, 4(4):e115.
- [18]Yamaguchi TP, Bradley A, McMahon AP, Jones S: A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 1999, 126(6):1211-1223.
- [19]Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, Trent JM: Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 2002, 1(3):279-288.
- [20]Zhu Y, Tian Y, Du J, Hu Z, Yang L, Liu J, Gu L: Dvl2-dependent activation of Daam1 and RhoA regulates Wnt5a-induced breast cancer cell migration. PloS One 2012, 7(5):e37823.
- [21]Zhu Y, Shen T, Liu J, Zheng J, Zhang Y, Xu R, Sun C, Du J, Chen Y, Gu L: Rab35 is required for Wnt5a/Dvl2-induced Rac1 activation and cell migration in MCF-7 breast cancer cells. Cell Signal 2013, 25(5):1075-1085.
- [22]Kurayoshi M, Oue N, Yamamoto H, Kishida M, Inoue A, Asahara T, Yasui W, Kikuchi A: Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res 2006, 66(21):10439-10448.
- [23]Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, et al.: Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 2000, 406(6795):536-540.
- [24]Kremenevskaja N, von Wasielewski R, Rao AS, Schofl C, Andersson T, Brabant G: Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene 2005, 24(13):2144-2154.
- [25]Dejmek J, Dejmek A, Safholm A, Sjolander A, Andersson T: Wnt-5a protein expression in primary dukes B colon cancers identifies a subgroup of patients with good prognosis. Cancer Res 2005, 65(20):9142-9146.
- [26]Liu XH, Pan MH, Lu ZF, Wu B, Rao Q, Zhou ZY, Zhou XJ: Expression of Wnt-5a and its clinicopathological significance in hepatocellular carcinoma. Dig Liver Dis 2008, 40(7):560-567.
- [27]Safholm A, Tuomela J, Rosenkvist J, Dejmek J, Harkonen P, Andersson T: The Wnt-5a-derived hexapeptide Foxy-5 inhibits breast cancer metastasis in vivo by targeting cell motility. Clin Cancer Res 2008, 14(20):6556-6563.
- [28]Jonsson M, Dejmek J, Bendahl PO, Andersson T: Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res 2002, 62(2):409-416.
- [29]Witze ES, Litman ES, Argast GM, Moon RT, Ahn NG: Wnt5a control of cell polarity and directional movement by polarized redistribution of adhesion receptors. Science 2008, 320(5874):365-369.
- [30]Masckauchan TN, Agalliu D, Vorontchikhina M, Ahn A, Parmalee NL, Li CM, Khoo A, Tycko B, Brown AM, Kitajewski J: Wnt5a signaling induces proliferation and survival of endothelial cells in vitro and expression of MMP-1 and Tie-2. Mol Biol Cell 2006, 17(12):5163-5172.
- [31]Dejmek J, Dib K, Jonsson M, Andersson T: Wnt-5a and G-protein signaling are required for collagen-induced DDR1 receptor activation and normal mammary cell adhesion. Int J Canc Suppl J Int Canc Suppl 2003, 103(3):344-351.
- [32]Ko YB, Kim BR, Nam SL, Yang JB, Park SY, Rho SB: High-mobility group box 1 (HMGB1) protein regulates tumor-associated cell migration through the interaction with BTB domain. Cell Signal 2014, 26(4):777-783.
- [33]Sobolik T, Su YJ, Wells S, Ayers GD, Cook RS, Richmond A: CXCR4 drives the metastatic phenotype in breast cancer through induction of CXCR2, and activation of MEK and PI3K pathways. Mol Biol Cell 2014, mbc.E13-07-0360.
- [34]Cho TM, Kim WJ, Moon SK: AKT signaling is involved in fucoidan-induced inhibition of growth and migration of human bladder cancer cells. Food Chem Toxicol 2014, 64:344-352.