期刊论文详细信息
Clinical Proteomics
Proteomic analysis of human vitreous humor
Akhilesh Pandey6  Harsha Gowda1  TS Keshava Prasad5  Venkatarangaiah Krishna3  Bipin G Nair4  Arun Parashar2  Nandini A Sahasrabuddhe1  Rakesh Sharma8  Arun H Patil1  Srikanth Srinivas Manda5  Praveen R Murthy7  Harrys KC Jacob1  Yashwanth Subbannayya1  Renu Goel3  Krishna R Murthy7 
[1] Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India;Armed Forces Medical College, Pune 411 040, India;Department of Biotechnology, Kuvempu University, Shankaraghatta, Karnataka 577 451, India;Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690 525, India;Centre of Excellence in Bioinformatics, Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry 605 014, India;Department of Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore 21205 MD, USA;Vittala International Institute Of Ophthalmology, Bangalore, Karnataka 560085, India;Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bangalore 560 006, India
关键词: Body fluid proteomics;    Protein biomarkers;    Secreted proteins;    Proteome discoverer;    OFFGEL electrophoresis;    SCX chromatography;    Retina;   
Others  :  1026179
DOI  :  10.1186/1559-0275-11-29
 received in 2014-02-19, accepted in 2014-05-16,  发布年份 2014
PDF
【 摘 要 】

Background

The vitreous humor is a transparent, gelatinous mass whose main constituent is water. It plays an important role in providing metabolic nutrient requirements of the lens, coordinating eye growth and providing support to the retina. It is in close proximity to the retina and reflects many of the changes occurring in this tissue. The biochemical changes occurring in the vitreous could provide a better understanding about the pathophysiological processes that occur in vitreoretinopathy. In this study, we investigated the proteome of normal human vitreous humor using high resolution Fourier transform mass spectrometry.

Results

The vitreous humor was subjected to multiple fractionation techniques followed by LC-MS/MS analysis. We identified 1,205 proteins, 682 of which have not been described previously in the vitreous humor. Most proteins were localized to the extracellular space (24%), cytoplasm (20%) or plasma membrane (14%). Classification based on molecular function showed that 27% had catalytic activity, 10% structural activity, 10% binding activity, 4% cell and 4% transporter activity. Categorization for biological processes showed 28% participate in metabolism, 20% in cell communication and 13% in cell growth. The data have been deposited to the ProteomeXchange with identifier PXD000957.

Conclusion

This large catalog of vitreous proteins should facilitate biomedical research into pathological conditions of the eye including diabetic retinopathy, retinal detachment and cataract.

【 授权许可】

   
2014 Murthy et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140903111132279.pdf 686KB PDF download
Figure 4. 44KB Image download
Figure 3. 54KB Image download
Figure 2. 57KB Image download
Figure 1. 54KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Jack RL: Ultrastructure of the hyaloid vascular system. Arch Ophthalmol 1972, 87(5):555-567.
  • [2]Linsenmayer TF, Gibney E, Little CD: Type II collagen in the early embryonic chick cornea and vitreous: immunoradiochemical evidence. Exp Eye Res 1982, 34(3):371-379.
  • [3]Walker F, Patrick RS: Constituent monosaccharides and hexosamine concentration of normal human vitreous humour. Exp Eye Res 1967, 6(3):227-232.
  • [4]Locke JC, Morton WR: Further studies of the viscosity of aspirated human vitreous fluid: with special reference to its use in retinal detachment surgery. Trans Am Ophthalmol Soc 1965, 63:129-145.
  • [5]Scott JE: The chemical morphology of the vitreous. Eye 1992, 6(Pt 6):553-555.
  • [6]Bishop PN, Crossman MV, McLeod D, Ayad S: Extraction and characterization of the tissue forms of collagen types II and IX from bovine vitreous. Biochem J 1994, 299(Pt 2):497-505.
  • [7]Ramakrishnan S, Sulochana KN, Parikh S, Punitham R: Transthyretin (prealbumin) in eye structures and variation of vitreous-transthyretin in diseases. Indian J Ophthalmol 1999, 47(1):31-34.
  • [8]Eichenbaum JW, Zheng W: Distribution of lead and transthyretin in human eyes. J Toxicol Clin Toxicol 2000, 38(4):377-381.
  • [9]Clausen R, Weller M, Wiedemann P, Heimann K, Hilgers RD, Zilles K: An immunochemical quantitative analysis of the protein pattern in physiologic and pathologic vitreous. Graefes Arch Clin Exp Ophthalmol 1991, 229(2):186-190.
  • [10]Jacobson B: Identification of sialyl and galactosyl transferase activities in calf vitreous hyalocytes. Curr Eye Res 1984, 3(8):1033-1041.
  • [11]Yoshimura T, Sonoda KH, Sugahara M, Mochizuki Y, Enaida H, Oshima Y, Ueno A, Hata Y, Yoshida H, Ishibashi T: Comprehensive analysis of inflammatory immune mediators in vitreoretinal diseases. PLoS One 2009, 4(12):e8158.
  • [12]Nakanishi T, Koyama R, Ikeda T, Shimizu A: Catalogue of soluble proteins in the human vitreous humor: comparison between diabetic retinopathy and macular hole. J Chromatogr B Analyt Technol Biomed Life Sci 2002, 776(1):89-100.
  • [13]Kim T, Kim SJ, Kim K, Kang UB, Lee C, Park KS, Yu HG, Kim Y: Profiling of vitreous proteomes from proliferative diabetic retinopathy and nondiabetic patients. Proteomics 2007, 7(22):4203-4215.
  • [14]Gao BB, Chen X, Timothy N, Aiello LP, Feener EP: Characterization of the vitreous proteome in diabetes without diabetic retinopathy and diabetes with proliferative diabetic retinopathy. J Proteome Res 2008, 7(6):2516-2525.
  • [15]Ouchi M, West K, Crabb JW, Kinoshita S, Kamei M: Proteomic analysis of vitreous from diabetic macular edema. Exp Eye Res 2005, 81(2):176-182.
  • [16]Aretz S, Krohne TU, Kammerer K, Warnken U, Hotz-Wagenblatt A, Bergmann M, Stanzel BV, Kemph T, Holz FG, Schnolzer M, Kopitz J: In-depth mass spectrometric mapping of the human vitreous proteome. Proteome Sci 2013, 11(1):22.
  • [17]Simo R, Higuera M, Garcia Ramirez M, Canals F, Garcia-Arumi J, Hernandez C: Elevation of apolipoprotein A-1 and apolipoprotein H levels in the vitreous fluid and overexpression in the retina of diabetic patients. Arch Ophthalmol 2008, 126(8):1076-1081.
  • [18]Wu CW, Sauter JL, Johnson PK, Chen CD, Olsen TW: Identification and localization of major soluble proteins in human ocular tissue. Am J Ophthalmol 2004, 137(4):655-661.
  • [19]Yamane K, Minamoto A, Yamashita H, Takamura H, Miyamoto-Myoken Y, Yoshizato K, Nabetani T, Tsugita A, Mishima HK: Proteome analysis of human vitreous proteins. Mol Cell Proteomics 2003, 2(11):1177-1187.
  • [20]Zhang J, Gerhardinger C, Lorenzi M: Early complement activation and decreased levels of glycosylphosphatidylinositol-anchored complement inhibitors in human and experimental diabetic retinopathy. Diabetes 2002, 51(12):3499-3504.
  • [21]Raychaudhuri S, Iartchouk O, Chin K, Tan PL, Tai AK, Ripke S, Gowrisankar S, Vemuri S, Montgomery K, Yu Y, Reynolds R, Zack DJ, Campochiaro B, Campochiaro P, Katsanis N, Daly MJ, Seddon JM: A rare penetrant mutation in CFH confers high risk of age-related macular degeneration. Nat Genet 2011, 43(12):1232-1236.
  • [22]Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J: Complement factor H polymorphism in age-related macular degeneration. Science 2005, 308(5720):385-389.
  • [23]Rodriguez de Cordoba S, Esparza-Gordillo J, Goicoechea de Jorge E, Lopez-Trascasa M, Sanchez-Corral P: The human complement factor H: functional roles, genetic variations and disease associations. Mol Immunol 2004, 41(4):355-367.
  • [24]Ennis S, Gibson J, Cree AJ, Collins A, Lotery AJ: Support for the involvement of complement factor I in age-related macular degeneration. Eur J Hum Genet 2010, 18(1):15-16.
  • [25]Reardon AJ, Le Goff M, Briggs MD, McLeod D, Sheehan JK, Thornton DJ, Bishop PN: Identification in vitreous and molecular cloning of opticin, a novel member of the family of leucine-rich repeat proteins of the extracellular matrix. J Biol Chem 2000, 275(3):2123-2129.
  • [26]Ramesh S, Bonshek RE, Bishop PN: Immunolocalisation of opticin in the human eye. Br J Ophthalmol 2004, 88(5):697-702.
  • [27]Friedman JS, Faucher M, Hiscott P, Biron VL, Malenfant M, Turcotte P, Raymond V, Walter MA: Protein localization in the human eye and genetic screen of opticin. Hum Mol Genet 2002, 11(11):1333-1342.
  • [28]Friedman JS, Ducharme R, Raymond V, Walter MA: Isolation of a novel iris-specific and leucine-rich repeat protein (oculoglycan) using differential selection. Invest Ophthalmol Vis Sci 2000, 41(8):2059-2066.
  • [29]Liou GI, Ma DP, Yang YW, Geng L, Zhu C, Baehr W: Human interstitial retinoid-binding protein. Gene structure and primary structure. J Biol Chem 1989, 264(14):8200-8206.
  • [30]Taniguchi T, Adler AJ, Mizuochi T, Kochibe N, Kobata A: The structures of the asparagine-linked sugar chains of bovine interphotoreceptor retinol-binding protein. Occurrence of fucosylated hybrid-type oligosaccharides. J Biol Chem 1986, 261(4):1730-1736.
  • [31]Hollyfield JG, Fliesler SJ, Rayborn ME, Bridges CD: Rod photoreceptors in the human retina synthesize and secrete interstitial retinol-binding protein. Prog Clin Biol Res 1985, 190:141-149.
  • [32]Barnstable CJ, Tombran-Tink J: Neuroprotective and antiangiogenic actions of PEDF in the eye: molecular targets and therapeutic potential. Prog Retin Eye Res 2004, 23(5):561-577.
  • [33]Pepperberg DR, Okajima TL, Wiggert B, Ripps H, Crouch RK, Chader GJ: Interphotoreceptor retinoid-binding protein (IRBP). Molecular biology and physiological role in the visual cycle of rhodopsin. Mol Neurobiol 1993, 7(1):61-85.
  • [34]Den Hollander AI, McGee TL, Ziviello C, Banfi S, Dryja TP, Gonzalez-Fernandez F, Ghosh D, Berson EL: A homozygous missense mutation in the IRBP gene (RBP3) associated with autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci 2009, 50(4):1864-1872.
  • [35]Foltz DR, Nye JS: Hyperphosphorylation and association with RBP of the intracellular domain of Notch1. Biochem Biophys Res Commun 2001, 286(3):484-492.
  • [36]Ortego J, Escribano J, Becerra SP, Coca-Prados M: Gene expression of the neurotrophic pigment epithelium-derived factor in the human ciliary epithelium. Synthesis and secretion into the aqueous humor. Invest Ophthalmol Vis Sci 1996, 37(13):2759-2767.
  • [37]Meyer C, Notari L, Becerra SP: Mapping the type I collagen-binding site on pigment epithelium-derived factor. Implications for its antiangiogenic activity. J Biol Chem 2002, 277(47):45400-45407.
  • [38]Fan W, Crawford R, Xiao Y: The ratio of VEGF/PEDF expression in bone marrow mesenchymal stem cells regulates neovascularization. Differentiation 2011, 81(3):181-191.
  • [39]Park K, Jin J, Hu Y, Zhou K, Ma JX: Overexpression of pigment epithelium-derived factor inhibits retinal inflammation and neovascularization. Am J Pathol 2011, 178(2):688-698.
  • [40]Garcia-Ramirez M, Canals F, Hernandez C, Colome N, Ferrer C, Carrasco E, Garcia-Arumi J, Simo R: Proteomic analysis of human vitreous fluid by fluorescence-based difference gel electrophoresis (DIGE): a new strategy for identifying potential candidates in the pathogenesis of proliferative diabetic retinopathy. Diabetologia 2007, 50(6):1294-1303.
  • [41]Noma H, Funatsu H, Mimura T, Eguchi S, Shimada K, Hori S: Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor in macular edema with central retinal vein occlusion. Curr Eye Res 2011, 36(3):256-263.
  • [42]Konson A, Pradeep S, D'Acunto CW, Seger R: Pigment epithelium-derived factor and its phosphomimetic mutant induce JNK-dependent apoptosis and p38-mediated migration arrest. J Biol Chem 2011, 286(5):3540-3551.
  • [43]Khanna AK, Meher S, Prakash S, Tiwary SK, Singh U, Srivastava A, Dixit VK: Comparison of Ranson, Glasgow, MOSS, SIRS, BISAP, Apache-II, CTSI scores, IL-6, CRP and Procalcitonin in predicting severity, organ failure, pancreatic necrosis and mortality in acute pancratitis. HPB Surg 2013, 2013:367581.
  • [44]Ucmak D, Akkurt M, Toprak G, Yesilova Y, Turan E, Yıldız I: Determination of dermatology life quality index, and serum C-reactive protein and plasma interleukin-6 levels in patients with chronic urticaria. Postepy Dermatol Alergol 2013, 30(3):146-151.
  • [45]Clemmons DR: Role of insulin-like growth factor binding proteins in controlling IGF actions. Mol Cell Endocrinol 1998, 140(1–2):19-24.
  • [46]Clemmons DR: Insulin-like growth factor binding proteins and their role in controlling IGF actions. Cytokine Growth Factor Rev 1997, 8(1):45-62.
  • [47]Clemmons DR, Busby W, Clarke JB, Parker A, Duan C, Nam TJ: Modifications of insulin-like growth factor binding proteins and their role in controlling IGF actions. Endocr J 1998, 45(Suppl):S1-S8.
  • [48]Ceda GP, Fielder PJ, Henzel WJ, Louie A, Donovan SM, Hoffman AR, Rosenfeld RG: Differential effects of insulin-like growth factor (IGF)-I and IGF-II on the expression of IGF binding proteins (IGFBPs) in a rat neuroblastoma cell line: isolation and characterization of two forms of IGFBP-4. Endocrinology 1991, 128(6):2815-2824.
  • [49]Shimasaki S, Gao L, Shimonaka M, Ling N: Isolation and molecular cloning of insulin-like growth factor-binding protein-6. Mol Endocrinol 1991, 5(7):938-948.
  • [50]Li Z, Picard F: Modulation of IGFBP2 mRNA expression in white adipose tissue upon aging and obesity. Horm Metab Res 2010, 42(11):787-791.
  • [51]Koyama N, Zhang J, Huqun , Miyazawa H, Tanaka T, Su X, Hagiwara K: Identification of IGFBP-6 as an effector of the tumor suppressor activity of SEMA3B. Oncogene 2008, 27(51):6581-6589.
  • [52]Ehrenborg E, Zazzi H, Lagercrantz S, Granqvist M, Hillerbrand U, Allander SV, Larsson C, Luthman H: Characterization and chromosomal localization of the human insulin-like growth factor-binding protein 6 gene. Mamm Genome 1999, 10(4):376-380.
  • [53]Neumann GM, Marinaro JA, Bach LA: Identification of O-glycosylation sites and partial characterization of carbohydrate structure and disulfide linkages of human insulin-like growth factor binding protein 6. Biochemistry 1998, 37(18):6572-6585.
  • [54]Migita T, Narita T, Asaka R, Miyagi E, Nagano H, Nomura K, Matsuura M, Satoh Y, Okumura S, Nakagawa K, Seimiya H, Ishikawa Y: Role of insulin-like growth factor binding protein 2 in lung adenocarcinoma: IGF-independent antiapoptotic effect via caspase-3. Am J Pathol 2010, 176(4):1756-1766.
  • [55]Zhuang T, Chen Q, Cho MK, Vishnivetskiy SA, Iverson TM, Gurevich VV, Sanders CR: Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Proc Natl Acad Sci U S A 2013, 110(3):942-947.
  • [56]Zhao C, Yang P, He H, Lin X, Li B, Zhou H, Huang X, Kijlstra A: S-antigen specific T helper type 1 response is present in Behcet's disease. Mol Vis 2008, 14:1456-1464.
  • [57]Huang L, Li W, Tang W, Zhu X, Ou-Yang P, Lu G: A Chinese family with Oguchi’s disease due to compound heterozygosity including a novel deletion in the arrestin gene. Mol Vis 2012, 18:528-536.
  • [58]Fujinami K, Tsunoda K, Nakamura M, Oguchi Y, Miyake Y: Oguchi disease with unusual findings associated with a heterozygous mutation in the SAG gene. Arch Ophthalmol 2011, 129(10):1375-1376.
  • [59]Fuchs S, Nakazawa M, Maw M, Tamai M, Oguchi Y, Gal A: A homozygous 1-base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese. Nat Genet 1995, 10(3):360-362.
  • [60]Shi Y, Massagué J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003, 113(6):685-700.
  • [61]Wordinger RJ, Fleenor DL, Hellberg PE, Pang IH, Tovar TO, Zode GS, Fuller JA, Clark AF: Effects of TGF-beta2, BMP-4, and gremlin in the trabecular meshwork: implications for glaucoma. Invest Ophthalmol Vis Sci 2007, 48(3):1191-1200.
  • [62]David D, Cardoso J, Marques B, Marques R, Silva ED, Santos H, Boavida MG: Molecular characterization of a familial translocation implicates disruption of HDAC9 and possible position effect on TGFbeta2 in the pathogenesis of Peters’ anomaly. Genomics 2003, 81(5):489-503.
  • [63]Mathivanan S, Ahmed M, Ahn NG, Alexandre H, Amanchy R, Andrews PC, Bader JS, Balgley BM, Bantscheff M, Bennett KL, Bjorling E, Blagoev B, Bose R, Brahmachari SK, Burlingame AS, Bustelo XR, Cagney G, Cantin GT, Cardasis HL, Celis JE, Chaerkady R, Chu F, Cole PA, Costello CE, Cotter RJ, Crockett D, DeLany JP, De Marzo AM, DeSouza LV, Deutsch EW, et al.: Human Proteinpedia enables sharing of human protein data. Nat Biotechnol 2008, 26(2):164-167.
  • [64]Mishra GR, Suresh M, Kumaran K, Kannabiran N, Suresh S, Bala P, Shivakumar K, Anuradha N, Reddy R, Raghavan TM, Menon S, Hanumanthu G, Gupta M, Upendran S, Gupta S, Mahesh M, Jacob B, Mathew P, Chatterjee P, Arun KS, Sharma S, Chandrika KN, Deshpande N, Palvankar K, Raghavnath R, Krishnakanth R, Karathia H, Rekha B, Nayak R, Vishnupriya G, et al.: Human protein reference database–2006 update. Nucleic Acids Res 2006, 34(Database issue):D411-D414.
  • [65]Goel R, Harsha HC, Pandey A, Prasad TS: Human Protein Reference Database and Human Proteinpedia as resources for phosphoproteome analysis. Mol Biosyst 2012, 8(2):453-463.
  • [66]Harsha HC, Molina H, Pandey A: Quantitative proteomics using stable isotope labeling with amino acids in cell culture. Nat Protoc 2008, 3(3):505-516.
  • [67]Goel R, Murthy KR, Srikanth SM, Pinto SM, Bhattacharjee M, Kelkar DS, Madugundu AK, Dey G, Mohan SS, Venkatarangaiah K, Prasad TSK, Chakravarti S, Harsha HC, Pandey A: Characterizing the normal proteome of human ciliary body. Clin Proteomics 2013, 10(1):9.
  • [68]Chaerkady R, Harsha HC, Nalli A, Gucek M, Vivekanandan P, Akhtar J, Cole RN, Simmers J, Schulick RD, Singh S, Torbenson M, Pandey A, Thuluvath PJ: A quantitative proteomic approach for identification of potential biomarkers in hepatocellular carcinoma. J Proteome Res 2008, 7(10):4289-4298.
  • [69]Yang Y, Chaerkady R, Kandasamy K, Huang TC, Selvan LD, Dwivedi SB, Kent OA, Mendell JT, Pandey A: Identifying targets of miR-143 using a SILAC-based proteomic approach. Mol Biosyst 2010, 6(10):1873-1882.
  • [70]Barbhuiya MA, Sahasrabuddhe NA, Pinto SM, Mutjusamy B, Singh TD, Nanjappa V, Keerthikumar S, Delanghe B, Harsha HC, Chaerkady R, Jalaj V, Gupta S, Srivastav BR, Tiwari PK, Pandey A: Comprehensive proteomic analysis of human bile. Proteomics 2011, 11(23):4443-4453.
  • [71]Kelkar DS, Kumar D, Kumar P, Muthusamy B, Yadav AK, Srivastava P, Marimuthu A, Anand S, Sundaram H, Kingsbury R, Harsha HC, Nair B, Prasad TS, Chauhan DS, Katoch K, Katoch VM, Kumar P, Chaerkady R, Ramachandran S, Dash D, Pandey A: Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry. Mol Cell Proteomics 2011, 10(12):M111.011627. doi: 10.1074/mcp.M111.011445. Epub 2011 Oct 3
  • [72]Rappsilber J, Mann M, Ishihama Y: Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2007, 2(8):1896-1906.
  • [73]Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A: Human Protein Reference Database--2009 update. Nucleic Acids Res 2009, 37(Database issue):D767-D772.
  • [74]Vizcaíno JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Ríos D, Dianes JA, Sun Z, Farrah T, Bandeira N, Binz PA, Xenarios I, Eisenacher M, Mayer G, Gatto L, Campos A, Chalkley RJ, Kraus HJ, Albar JP, Martinez-Bartolomé S, Apweiler R, Omenn GS, Martens L, Jones AR, Hermjakob H: ProteomeXchange provides globally co-ordinated proteomics data submission and dissemination. Nature Biotechnol 2014, 30(3):223-226.
  文献评价指标  
  下载次数:30次 浏览次数:5次