期刊论文详细信息
Journal of Translational Medicine
An interactive web application for the dissemination of human systems immunology data
Damien Chaussabel1  Charlie Quinn2  Laurent Chiche4  Noemie Jourde-Chiche3  Darawan Rinchai1  Dimitry Popov2  Olivia Vargas2  Elizabeth Whalen2  Michael J. Mason2  David Anderson2  Anna Bjork2  Brad Zeitner2  Kelly Domico2  Scott Presnell2  Cate Speake2 
[1] Sidra Medical and Research Center, Doha, Qatar;Benaroya Research Institute, Systems Immunology Laboratory, 1201 Ninth Ave., Seattle 98101, WA, USA;Aix-Marseille University, Marseille, France;Department of Internal Medicine and Infectious Diseases, European Hospital, Marseille, France
关键词: Bioinformatics;    Immunology;    Software;    Transcriptomics;   
Others  :  1228115
DOI  :  10.1186/s12967-015-0541-x
 received in 2015-02-23, accepted in 2015-05-18,  发布年份 2015
PDF
【 摘 要 】

Background

Systems immunology approaches have proven invaluable in translational research settings. The current rate at which large-scale datasets are generated presents unique challenges and opportunities. Mining aggregates of these datasets could accelerate the pace of discovery, but new solutions are needed to integrate the heterogeneous data types with the contextual information that is necessary for interpretation. In addition, enabling tools and technologies facilitating investigators’ interaction with large-scale datasets must be developed in order to promote insight and foster knowledge discovery.

Methods

State of the art application programming was employed to develop an interactive web application for browsing and visualizing large and complex datasets. A collection of human immune transcriptome datasets were loaded alongside contextual information about the samples.

Results

We provide a resource enabling interactive query and navigation of transcriptome datasets relevant to human immunology research. Detailed information about studies and samples are displayed dynamically; if desired the associated data can be downloaded. Custom interactive visualizations of the data can be shared via email or social media. This application can be used to browse context-rich systems-scale data within and across systems immunology studies.This resource is publicly available online at [Gene Expression Browser Landing Page (https://gxb.benaroyaresearch.org/dm3/landing.gsp)]. The source code is also available openly [Gene Expression Browser Source Code (https://github.com/BenaroyaResearch/gxbrowser)].

Conclusions

We have developed a data browsing and visualization application capable of navigating increasingly large and complex datasets generated in the context of immunological studies. This intuitive tool ensures that, whether taken individually or as a whole, such datasets generated at great effort and expense remain interpretable and a ready source of insight for years to come.

【 授权许可】

   
2015 Speake et al.

【 预 览 】
附件列表
Files Size Format View
20150930093617630.pdf 2235KB PDF download
Figure6. 69KB Image download
Figure5. 75KB Image download
Figure4. 72KB Image download
Figure3. 54KB Image download
Figure2. 22KB Image download
Figure1. 89KB Image download
【 图 表 】

Figure1.

Figure2.

Figure3.

Figure4.

Figure5.

Figure6.

【 参考文献 】
  • [1]Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF et al.. NCBI GEO: archive for functional genomics data sets–10 years on. Nucleic Acids Res. 2011; 39(Database issue):D1005-D1010.
  • [2]Heng TSP, Painter MW. The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol. 2008; 9:1091-1094.
  • [3]Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkey ME et al.. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell. 2011; 144:296-309.
  • [4]Haining WN, Ebert BL, Subrmanian A, Wherry EJ, Eichbaum Q, Evans JW et al.. Identification of an evolutionarily conserved transcriptional signature of CD8 memory differentiation that is shared by T and B cells. J Immunol. 2008; 181:1859-1868.
  • [5]Chevrier N, Mertins P, Artyomov MN, Shalek AK, Iannacone M, Ciaccio MF et al.. Systematic discovery of TLR signaling components delineates viral-sensing circuits. Cell. 2011; 147:853-867.
  • [6]Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A et al.. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol. 2010; 11:1136-1142.
  • [7]Germain RN, Meier-Schellersheim M, Nita-Lazar A, Fraser IDC. Systems biology in immunology: a computational modeling perspective. Annu Rev Immunol. 2010; 2011(29):527-585.
  • [8]Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med. 2005; 201:1479-1486.
  • [9]Berry MPR, Graham CM, McNab FW, Xu Z, Bloch SAA, Oni T et al.. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature. 2010; 466:973-977.
  • [10]Pascual V, Chaussabel D, Banchereau J. A genomic approach to human autoimmune diseases. Annu Rev Immunol. 2009; 2010(28):535-571.
  • [11]Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, Teuwen D et al.. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol. 2009; 10:116-125.
  • [12]Nakaya HI, Wrammert J, Lee EK, Racioppi L, Marie-Kunze S, Haining WN et al.. Systems biology of vaccination for seasonal influenza in humans. Nat Immunol. 2011; 12:786-795.
  • [13]Obermoser G, Presnell S, Domico K, Xu H, Wang Y, Anguiano E et al.. Systems scale interactive exploration reveals quantitative and qualitative differences in response to influenza and pneumococcal vaccines. Immunity. 2013; 38:831-844.
  • [14]Gene Expression Browser Landing Page (https://gxb.benaroyaresearch.org/dm3/landing.gsp)
  • [15]Gene Expression Browser Source Code (https://github.com/BenaroyaResearch/gxbrowser)
  • [16]Grails Programming Language (http://www.grails.org)
  • [17]Groovy Programming Language (http://groovy.codehaus.org/)
  • [18]jQuery Javascript Library (http://jquery.com/)
  • [19]Apache Tomcat (http://tomcat.apache.org/)
  • [20]MySQL Database (http://www.mysql.com/)
  • [21]Mongo Database (http://www.mongodb.org/)
  • [22]R Programming Language (http://www.r-project.org/)
  • [23]Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004; 3(1):1-25.
  • [24]Gene Expression Browser R Scripts (https://github.com/BenaroyaResearch/gxrscripts)
  • [25]Gene Expression Browser Starter Databases (http://gxb.benaroyaresearch.org/downloads)
  • [26]NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/)
  • [27]Hutcheson J, Scatizzi JC, Siddiqui AM, Haines GK, Wu T, Li Q-Z et al.. Combined deficiency of proapoptotic regulators Bim and Fas results in the early onset of systemic autoimmunity. Immunity. 2008; 28:206-217.
  • [28]Vargova K, Curik N, Burda P, Basova P, Kulvait V, Pospisil V et al.. MYB transcriptionally regulates the miR-155 host gene in chronic lymphocytic leukemia. Blood. 2011; 117:3816-3825.
  • [29]Gene Expression Browser Video Tutorial (https://gxb.benaroyaresearch.org/dm3/tutorials.gsp)
  • [30]Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012; 40((Database issue)):D109-D114.
  • [31]Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 2012; 40:130-135.
  • [32]NCBI Gene. http://www. ncbi.nlm.nih.gov/gene webcite
  • [33]Wikipedia. https://www. wikipedia.org/ webcite
  • [34]Wolfram Alpha. http://www. wolframalpha.com/ webcite
  • [35]Interactive Gene Expression Figures Associated with Obermoser, Presnell et al. (2013). http://www. interactivefigures.com/dm3/miniURL/view/K7 webcite
  • [36]Gartner’s 3 Vs of Big Data. http://www. gartner.com/newsroom/id/1731916 webcite
  • [37]Chaussabel D, Baldwin N. Democratizing systems immunology with modular transcriptional repertoire analyses. Nat Rev Immunol. 2014; 14:271-280.
  • [38]Zoubarev A, Hamer KM, Keshav KD, McCarthy EL, Santos JRC, Van Rossum T et al.. Gemma: a resource for the re-use, sharing and meta-analysis of expression profiling data. Bioinformatics. 2012; 28(17):2272-2273.
  • [39]Kilpinen S, Autio R, Ojala K, Iljin K, Bucher E, Sara H et al.. Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues. Genome Biol. 2008; 9:R139. BioMed Central Full Text
  • [40]Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L et al.. Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics. 2008; 2008:420747.
  • [41]Schmid PR, Palmer NP, Kohane IS, Berger B. Making sense out of massive data by going beyond differential expression. Proc Natl Acad Sci USA. 2012; 109:5594-5599.
  • [42]Adler P, Kolde R, Kull M, Tkachenko A, Peterson H, Reimand J et al.. Mining for coexpression across hundreds of datasets using novel rank aggregation and visualization methods. Genome Biol. 2009; 10:R139. BioMed Central Full Text
  • [43]James RA, Rao MM, Chen ES, Goodell MA, Shaw CA. The Hematopoietic Expression Viewer: expanding mobile apps as a scientific tool. Bioinformatics. 2012; 28:1941-1942.
  • [44]Siebert JC, Munsil W, Rosenberg-Hasson Y, Davis MM, Maecker HT. The Stanford Data Miner: a novel approach for integrating and exploring heterogeneous immunological data. J Transl Med. 2012; 10:62. BioMed Central Full Text
  • [45]Kupershmidt I, Su QJ, Grewal A, Sundaresh S, Halperin I, Flynn J et al.. Ontology-based meta-analysis of global collections of high-throughput public data. PLoS One. 2010; 5(9):e13066.
  • [46]Interactive FACS Figure Associated with Obermoser, Presnell et al (2013). http://www. interactivefigures.com/sdb/dataVisualizer/view?miniUrl=iwtil0 webcite
  文献评价指标  
  下载次数:22次 浏览次数:7次