期刊论文详细信息
Cancer Cell International
Specific growth suppression of human cancer cells by targeted delivery of Dictyostelium mitochondrial ribosomal protein S4
Yasuo Maeda3  Hikaru Araki1  Junji Chida2 
[1] Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Kuramoto-cho, Tokushima 770-8503, Japan;Division of Molecular Neurobiology, Institute for Enzyme Research, The University of Tokushima, Kuramoto-cho, Tokushima 770-8503, Japan;Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
关键词: Dictyostelium discoideum;    Human tumor;    Differentiation;    Proliferation;    Apoptosis;    Anticancer action;    Dd-mrp4;    Mitochondrial ribosomal protein S4 (MRP4);   
Others  :  791772
DOI  :  10.1186/1475-2867-14-56
 received in 2014-04-27, accepted in 2014-06-09,  发布年份 2014
PDF
【 摘 要 】

Background

In general, growth and differentiation are mutually exclusive but are cooperatively regulated throughout development. Thus, the process of a cell’s switching from growth to differentiation is of great importance not only for the development of organisms but also for malignant transformation, in which this process is reversed. We have previously demonstrated using a Dictyostelium model system that the Dictyostelium mitochondrial ribosomal protein S4 (Dd-mrp4) gene expression is essential for the initiation of cell differentiation: Dd-mrp4-null cells fail to initiate differentiation, while the initial step of cell differentiation and the subsequent morphogenesis are markedly enhanced in mrp4OE cells overexpressing the Dd-mrp4 in the extramitochondrial cytoplasm. This raised a possibility that the ectopically enforced expression of the Dd-mrp4 in human cells might inhibit their growth, particularly of malignant tumor cells, by inducing cell differentiation.

Methods

Four kinds of human tumor cell lines were transfected by three kind of vector constructs (the empty vector: pcDNA3.1 (Mock); pcDNA3.1-rps4 bearing Dictyostelium cytoplasmic ribosomal protein S4; pcDNA3.1-mrp4 bearing Dictyostelium mitochondrial ribosomal protein S4). As controls, four kinds of human primary cultured cells were similarly transfected by the above vector constructs. After transfection, growth kinetics of cells was analyzed using cell viability assay, and also the TUNEL method was used for evaluation of apoptotic cells.

Results

Ectopically expressed Dd-mrp4 suppressed cell proliferation through inducing apoptotic cell death specifically in the human lung adenocarcinoma (A549), epithelial cervical cancer (HeLa), hepatocellular carcinoma (HepG2) and colonic carcinoma (Caco-2), but not in primary cultured normal cells, such as human brain microvascular endothelial cells (HBMECs); human umbilical vein endothelial cells (HUVECs) and human normal hepatocytes (hHeps™), with one exception (human cardiac fibloblasts (HCF)).

Conclusion

The present finding that the ectopically enforced expression of Dd-mrp4 in human several tumor cell lines specifically suppresses their proliferation suggests strongly that the Dd-mrp4 gene derived from Dictyostelium mitochondria may provide a new promising therapeutic strategy for disrupting cell viability pathways in human cancers.

【 授权许可】

   
2014 Chida et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705021253572.pdf 2069KB PDF download
Figure 5. 153KB Image download
Figure 4. 75KB Image download
Figure 3. 79KB Image download
Figure 2. 181KB Image download
Figure 1. 114KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Hengertner MO: The biochemistry of apoptosis. Nature 2000, 407:770-776.
  • [2]Koc EC, Ranasinghe A, Burkhart W, Blackburn K, Koc H, Moseley A, Spremulli LL: A new face on apoptosis: death-associated protein 3 and PDCD9 are mitochondrial ribosomal proteins. FEBS Lett 2001, 492:166-170.
  • [3]Zhang Y, Herman B: Aging and apoptosis. Mech Ageing Dev 2002, 123:245-260.
  • [4]Chalah A, Khosravi-Far R: The mitochondrial death pathway. Adv Exp Med Biol 2008, 615:25-45.
  • [5]Brenner D, Mak TW: Mitochondrial cell death effectors. Curr Opin Cell Biol 2009, 21:871-877.
  • [6]Favaloro B, Allocati N, Graziano V, Di Ilio C, De Laurenzi V: Role of apoptosis in disease. Aging (Albany NY) 2012, 4:330-349.
  • [7]Hilgendorf KI, Leshchiner ES, Nedelcu S, Maynard MA, Calo E, Ianari A, Walensky LD, Lees JA: The retinoblastoma protein induces apoptosis directly at the mitochondria. Genes Dev 2013., 27doi:10.1101/gad.211326.112
  • [8]Pradelli LA, Beneteau M, Ricci JE: Mitochondrial control of caspase-dependent and -independent cell death. Cell Mol Life Sci 2010, 67:1589-1597.
  • [9]Ola MS, Nawaz M, Ahsan H: Role of Bcl-2 family proteins and caspases in the regulation apoptosis. Mol Cell Biochem 2011, 351:41-58.
  • [10]Attardi G: Animal mitochondrial DNA: an extreme example of genetic economy. Int Rev Cytol 1985, 93:93-145.
  • [11]Chomyn A, Cleeter MWJ, Ragan CI, Riley M, Doolittle RF, Attardi G: URF6, the last unidentified reading frame of human mitochondrial DNA, codes for an NADH dehydrogenase subunit. Science 1986, 234:614-618.
  • [12]Miller JL, Koc HK, Koc EC: Identification of phosphorylation sites in mammalian mitochondrial ribosomal protein DAP3. Protein Sci 2008, 17:251-260.
  • [13]Yoo YA, Kim MJ, Park JK, Chung YM, Lee JH, Chi SG, Kim JS, Yoo YD: Mitochondrial ribosomal protein L41 suppresses cell growth in association with p53 and p27Kip1. Mol Cell Biol 2005, 25:6603-6616.
  • [14]Saini N, Balhara J, Adlakha YK, Singh N: S29 ribosomal protein induces mitochondria mediated apoptosis of Hep2 cells via the activation of p38 MAPK and JNK signaling. Int J Integr Biol 2009, 5:49-57.
  • [15]Tsofack SP, Meunier L, Sanchez L, Madore J, Provencher D, Mes-Masson AM, Lebel M: Low expression of the X-linked ribosomal protein S4 in human serous epithelial ovarian cancer is associated with a poor prognosis. BMC Cancer 2013, 13:303. doi:10.1186/1471-2407-13-303 BioMed Central Full Text
  • [16]Kuspa A, Loomis W: Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA. Proc Natl Acad Sci U S A 1992, 89:8803-8807.
  • [17]Maeda Y, Ohmori T, Abe T, Abe F, Amagai A: Transition of starving Dictyostelium cells to differentiation phase at a particular position of the cell cycle. Cell Differ 1989, 41:169-175.
  • [18]Maeda Y: Regulation of growth and differentiation in Dictyostelium. Int Rev Cytol 2005, 244:287-332.
  • [19]Maeda Y: Cell-cycle checkpoint for transition from cell division to differentiation. Dev Growth Differ 2011, 53:463-481.
  • [20]Maeda Y, Chida J: Control of cell differentiation by mitochondria, typically evidenced in Dictyostelium development. Biomolecules 2013, 3:943-966. doi:10.3390/biom304094310.3390/biom3040943
  • [21]Inazu Y, Chae S-C, Maeda Y: Transient expression of a mitochondrial gene cluster including rps4 is essential for the phase-shift of Dictyostelium cells from growth to differentiation. Dev Genet 1999, 25:339-352.
  • [22]Chida J, Amagai A, Tanaka M, Maeda Y: Establishment of a new method for precisely determining the functions of individual mitochondrial genes, using Dictyostelium cells. BMC Genet 2008., 9doi:10.1186/1471-2156-9-25
  • [23]Pilcher KE, Fey P, Gaudet P, Kowal AS, Chisholm RL: A reliable general purpose method for extracting genomic DNA from Dictyostelium cells. Nat Protoc 2007, 2:1325-1328.
  • [24]Schieber GL, O’Brien TW: Site of synthesis of the proteins of mammalian mitochondrial ribosomes: evidence from cultured bovine cells. J Biol Chem 1985, 260:6367-6372.
  • [25]O’Brien TW: Properties of human mitochondrial ribosomes. Life 2003, 55:505-513.
  • [26]Fisher EMC, Beer-Romero P, Brown LG, Ridley A, McNeil JA, Lawrence JB, Willard HF, Bieber FR, Page DC: Homologous ribosomal genes on the human X and Y chromosomes: escape from X inactivation and possible implications for Turner syndrome. Cell 1990, 63:1205-1218.
  • [27]Albrecht-Schgoer K, Schgoer W, Holfeld J, Theurl M, Wiedemann D, Steger C, Gupta R, Semsroth S, Fischer-Colbrie R, Beer AG, Albrecht-Schgoer K, Schgoer W, Holfeld J, Theurl M, Wiedemann D, Steger C, Gupta R, Semsroth S, Fischer-Colbrie R, Beer AG, Stanzl U, Huber E, Misener S, Dejaco D, Kishore R, Pachinger O, Grimm M, Bonaros N, Kirchmair R: The angiogenic factor secretoneurin induces coronary angiogenesis in a model of myocardial infarction by stimulation of vascular endothelial growth factor signaling in endothelial cells. Circulation 2012, 126:2491-2501.
  • [28]Morita T, Amagai A, Maeda Y: Unique behavior of a Dictyostelium homologue of TRAP-1, coupling with differentiation of D. discoideum cells. Exp Cell Res 2002, 280:45-54.
  • [29]Morita T, Amagai A, Maeda Y: Translocation of the Dictyostelium TRAP1 homologue to mitochondria induces a novel prestarvation response. J Cell Sci 2004, 117:5759-5770.
  • [30]Matsuyama S-I, Maeda Y: A mitochondrion as the structural basis of the formation of a cell-type-specific organelle in Dictyostelium development. Protoplasma 1998, 201:172-179.
  • [31]Yamaguchi H, Morita T, Amagai A, Maeda Y: Changes in spatial and temporal localization of Dictyostelium homologues of TRAP1 and GRP94 revealed by immuno-electron microscopy. Exp Cell Res 2005, 303:415-424.
  • [32]Wilczynska Z, Bart C, Fisher PR: Mitochondrial mutations impair signal transduction in Dictyostelium slug. Biochem Biophys Res Commun 1997, 234:39-43.
  • [33]Kotsifas M, Barth C, de Lozanne A, Lay ST, Fisher PR: Chaperonin 60 and mitochondrial disease in Dictyostelium. J Muscle Res Cell Motil 2002, 23:839-852.
  • [34]Van Es S, Wessels D, Soll DR, Borleis J, Devreotes PN: Tortoise, a novel mitochondrial protein is required for directional responses of Dictyostelium in chemotactic gradients. J Cell Biol 2001, 152:621-632.
  • [35]Hosoya K, Amagai A, Chida J, Maeda Y: Unique behavior and function of the mitochondrial ribosomal protein S4 (RPS4) in early Dictyostelium development. Zool Sci 2003, 20:1455-1465.
  • [36]Daugus E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prevost MC, Leber B, Andrews D, Penninger J, Kroemer G: Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J 2000, 14:729-739.
  • [37]Ohsato T, Ishihara N, Muta T, Umeda S, Ikeda S, Mihara K, Hamasaki N, Kang D: Mammalian mitochondrial endonuclease G. Digestion of R-loops and localization in intermembrane space. Eur J Biochem 2002, 269:5765-5770.
  • [38]Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantoni P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G: Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999, 397:441-446.
  • [39]Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, Kikuchi H, Sasaki S, Imai K, Shibue T, Honda K, Taniguchi T, Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, Kikuchi H, Sasaki S, Imai K, Shibue T, Honda K, Taniguchi T: Integration of interferon-alpha/beta signaling to p53 responses in tumor suppression and antiviral defense. Nature 2003, 424:516-523.
  • [40]Morgenbessor SD, Williams BO, Jacks T, DePinho RA: p53-dependent apoptosis produced by Rb deficiency in the developing mouse lens. Nature 1994, 371:72-74.
  • [41]Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T, Van Dyke T: p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 1994, 78:703-711.
  • [42]Macleod KF, Hu Y, Jacks T: Loss of RB activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. EMBO J 1996, 15:6177-6188.
  • [43]Pan H, Yin C, Dyson NJ, Harlow E, Yamasaki L, Van Dyke T: Key roles for E2F1 in signaling p53-dependent apoptosis and in cell division within developing tumors. Mol Cell 1998, 2:283-292.
  • [44]Tsai KY, Hu Y, Macleod KF, Crowley D, Jacks T: Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of RB-deficient mouse embryos. Mol Cell 1998, 2:293-304.
  • [45]Ziebold U, Reza T, Caron A, Lees JA: E2F3 contributes both to the inappropriate proliferation and to the apoptosis arising in Rb mutant embryos. Genes Dev 2001, 15:386-391.
  • [46]Attardi LD, Sage J: RB goes mitochondrial. Genes Dev 2014, 27:975-979. doi:10.1101/gad.219451.113
  • [47]Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM: p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003, 11:577-590.
  • [48]Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S: p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 2012, 149:1536-1548.
  文献评价指标  
  下载次数:0次 浏览次数:6次