期刊论文详细信息
Cilia
Loss of primary cilia occurs early in breast cancer development
Kimberly M McDermott2  Karen Weihs3  Ray Nagle1  Frank W Li4  Nadia B Hassounah5  Ritu Pandey5  Lauren Lebeau1  Ina Menzl5 
[1]Department of Pathology, University of Arizona Medical Center, Tucson, AZ, USA
[2]Bio5 Institute, University of Arizona, Tucson, AZ, USA
[3]Department of Psychiatry, University of Arizona Medical Center, Tucson, AZ, USA
[4]Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
[5]The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
关键词: Cilia length;    Ciliogenesis;    Cancer-associated stroma;    Carcinoma in situ;    Invasive breast cancer;    Primary cilia;   
Others  :  790417
DOI  :  10.1186/2046-2530-3-7
 received in 2014-02-14, accepted in 2014-05-29,  发布年份 2014
PDF
【 摘 要 】

Background

Primary cilia are microtubule-based organelles that protrude from the cell surface. Primary cilia play a critical role in development and disease through regulation of signaling pathways including the Hedgehog pathway. Recent mouse models have also linked ciliary dysfunction to cancer. However, little is known about the role of primary cilia in breast cancer development. Primary cilia expression was characterized in cancer cells as well as their surrounding stromal cells from 86 breast cancer patients by counting cilia and measuring cilia length. In addition, we examined cilia expression in normal epithelial and stromal cells from reduction mammoplasties as well as histologically normal adjacent tissue for comparison.

Results

We observed a statistically significant decrease in the percentage of ciliated cells on both premalignant lesions as well as in invasive cancers. This loss of cilia does not correlate with increased proliferative index (Ki67-positive cells). However, we did detect rare ciliated cancer cells present in patients with invasive breast cancer and found that these express a marker of basaloid cancers that is associated with poor prognosis (Cytokeratin 5). Interestingly, the percentage of ciliated stromal cells associated with both premalignant and invasive cancers decreased when compared to stromal cells associated with normal tissue. To understand how cilia may be lost during cancer development we analyzed the expression of genes required for ciliogenesis and/or ciliary function and compared their expression in normal versus breast cancer samples. We found that expression of ciliary genes were frequently downregulated in human breast cancers.

Conclusions

These data suggest that primary cilia are lost early in breast cancer development on both the cancer cells and their surrounding stromal cells.

【 授权许可】

   
2014 Menzl et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705000107912.pdf 2290KB PDF download
Figure 5. 196KB Image download
Figure 4. 206KB Image download
Figure 3. 172KB Image download
Figure 2. 208KB Image download
Figure 1. 255KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Goetz SC, Anderson KV: The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 2010, 11:331-344.
  • [2]Hildebrandt F, Benzing T, Katsanis N: Ciliopathies. N Engl J Med 2011, 364:1533-1543.
  • [3]Hassounah NB, Bunch TA, McDermott KM: Molecular pathways: the role of primary cilia in cancer progression and therapeutics with a focus on Hedgehog signaling. Clin Cancer Res 2012, 18:2429-2435.
  • [4]Basten SG, Giles RH: Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis. Cilia 2013, 2:6. BioMed Central Full Text
  • [5]Wong SY, Seol AD, So PL, Ermilov AN, Bichakjian CK, Epstein EH Jr, Dlugosz AA, Reiter JF: Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med 2009, 15:1055-1061.
  • [6]Han YG, Kim HJ, Dlugosz AA, Ellison DW, Gilbertson RJ, Alvarez-Buylla A: Dual and opposing roles of primary cilia in medulloblastoma development. Nat Med 2009, 15:1062-1065.
  • [7]Barakat MT, Humke EW, Scott MP: Kif3a is necessary for initiation and maintenance of medulloblastoma. Carcinogenesis 2013, 34:1382-1392.
  • [8]Schraml P, Frew IJ, Thoma CR, Boysen G, Struckmann K, Krek W, Moch H: Sporadic clear cell renal cell carcinoma but not the papillary type is characterized by severely reduced frequency of primary cilia. Mod Pathol 2009, 22:31-36.
  • [9]Kim J, Dabiri S, Seeley ES: Primary cilium depletion typifies cutaneous melanoma in situ and malignant melanoma. PLoS ONE 2011, 6:e27410.
  • [10]Seeley ES, Carriere C, Goetze T, Longnecker DS, Korc M: Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res 2009, 69:422-430.
  • [11]Gradilone SA, Radtke BN, Bogert PS, Huang BQ, Gajdos GB, LaRusso NF: HDAC6 inhibition restores ciliary expression and decreases tumor growth. Cancer Res 2013, 73:2259-2270.
  • [12]Egeberg DL, Lethan M, Manguso R, Schneider L, Awan A, Jorgensen TS, Byskov AG, Pedersen LB, Christensen ST: Primary cilia and aberrant cell signaling in epithelial ovarian cancer. Cilia 2013, 1:15.
  • [13]Hassounah NB, Nagle R, Saboda K, Roe DJ, Dalkin BL, McDermott KM: Primary cilia are lost in preinvasive and invasive prostate cancer. PLoS ONE 2013, 8:e68521.
  • [14]Basten SG, Willekers S, Vermaat JS, Slaats GG, Voest EE, van Diest PJ, Giles RH: Reduced cilia frequencies in human renal cell carcinomas versus neighboring parenchymal tissue. Cilia 2013, 2:2. BioMed Central Full Text
  • [15]Yuan K, Frolova N, Xie Y, Wang D, Cook L, Kwon YJ, Steg AD, Serra R, Frost AR: Primary cilia are decreased in breast cancer: analysis of a collection of human breast cancer cell lines and tissues. J Histochem Cytochem 2010, 58:857-870.
  • [16]Nobutani K, Shimono Y, Yoshida M, Mizutani K, Minami A, Kono S, Mukohara T, Yamasaki T, Itoh T, Takao S, Minami H, Azuma T, Takai Y: Absence of primary cilia in cell cycle-arrested human breast cancer cells. Genes Cells 2014, 19:141-152.
  • [17]Wettenhall JM, Smyth GK: LimmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics 2004, 20:3705-3706.
  • [18]Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM: ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004, 6:1-6.
  • [19]Visvader JE: Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 2009, 23:2563-2577.
  • [20]McDermott KM, Liu BY, Tlsty TD, Pazour GJ: Primary cilia regulate branching morphogenesis during mammary gland development. Curr Biol 2010, 20:731-737.
  • [21]Pan J, Snell W: The primary cilium: keeper of the key to cell division. Cell 2007, 129:1255-1257.
  • [22]Scholzen T, Gerdes J: The Ki-67 protein: from the known and the unknown. J Cell Physiol 2000, 182:311-322.
  • [23]Lingle WL, Barrett SL, Negron VC, D’Assoro AB, Boeneman K, Liu W, Whitehead CM, Reynolds C, Salisbury JL: Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci U S A 2002, 99:1978-1983.
  • [24]Axlund SD, Yoo BH, Rosen RB, Schaack J, Kabos P, Labarbera DV, Sartorius CA: Progesterone-inducible cytokeratin 5-positive cells in luminal breast cancer exhibit progenitor properties. Horm Cancer 2013, 4:36-49.
  • [25]Inanc M, Ozkan M, Karaca H, Berk V, Bozkurt O, Duran AO, Ozaslan E, Akgun H, Tekelioglu F, Elmali F: Cytokeratin 5/6, c-Met expressions, and PTEN loss prognostic indicators in triple-negative breast cancer. Med Oncol 2014, 31:801.
  • [26]Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
  • [27]Broekhuis JR, Leong WY, Jansen G: Regulation of cilium length and intraflagellar transport. Int Rev Cell Mol Biol 2013, 303:101-138.
  • [28]Bhogaraju S, Engel BD, Lorentzen E: Intraflagellar transport complex structure and cargo interactions. Cilia 2013, 2:10. BioMed Central Full Text
  • [29]Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, Liao X, Iglehart JD, Livingston DM, Ganesan S: X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 2006, 9:121-132.
  • [30]Schmidts M, Arts HH, Bongers EM, Yap Z, Oud MM, Antony D, Duijkers L, Emes RD, Stalker J, Yntema JB, Plagnol V, Hoischen A, Gilissen C, Forsythe E, Lausch E, Veltman JA, Roeleveld N, Superti-Furga A, Kutkowska-Kazmierczak A, Kamsteeg EJ, Elcioglu N, van Maarle MC, Graul-Neumann LM, Devriendt K, Smithson SF, Wellesley D, Verbeek NE, Hennekam RC, Kayserili H, Scambler PJ, et al.: Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement. J Med Genet 2013, 50:309-323.
  • [31]Dagoneau N, Goulet M, Genevieve D, Sznajer Y, Martinovic J, Smithson S, Huber C, Baujat G, Flori E, Tecco L, Cavalcanti D, Delezoide AL, Serre V, Le Merrer M, Munnich A, Cormier-Daire V: DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. Am J Hum Genet 2009, 84:706-711.
  • [32]Yoon JW, Gallant M, Lamm ML, Iannaccone S, Vieux KF, Proytcheva M, Hyjek E, Iannaccone P, Walterhouse D: Noncanonical regulation of the Hedgehog mediator GLI1 by c-MYC in Burkitt lymphoma. Mol Cancer Res 2013, 11:604-615.
  • [33]Corbit KC, Shyer AE, Dowdle WE, Gaulden J, Singla V, Chen MH, Chuang PT, Reiter JF: Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol 2008, 10:70-76.
  • [34]Lancaster MA, Schroth J, Gleeson JG: Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nat Cell Biol 2011, 13:700-707.
  • [35]Benson JR, Wishart GC: Predictors of recurrence for ductal carcinoma in situ after breast-conserving surgery. Lancet Oncol 2013, 14:e348-e357.
  • [36]Pazour GJ, Rosenbaum JL: Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol 2002, 12:551-555.
  • [37]Ostrowski LE, Blackburn K, Radde KM, Moyer MB, Schlatzer DM, Moseley A, Boucher RC: A proteomic analysis of human cilia: identification of novel components. Mol Cell Proteomics 2002, 1:451-465.
  • [38]Li JB, Gerdes JM, Haycraft CJ, Fan Y, Teslovich TM, May-Simera H, Li H, Blacque OE, Li L, Leitch CC, Lewis RA, Green JS, Parfrey PS, Leroux MR, Davidson WS, Beales PL, Guay-Woodford LM, Yoder BK, Stormo GD, Katsanis N, Dutcher SK: Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 2004, 117:541-552.
  • [39]Smith JC, Northey JG, Garg J, Pearlman RE, Siu KW: Robust method for proteome analysis by MS/MS using an entire translated genome: demonstration on the ciliome of Tetrahymena thermophila. J Proteome Res 2005, 4:909-919.
  • [40]Pazour GJ, Agrin N, Leszyk J, Witman GB: Proteomic analysis of a eukaryotic cilium. J Cell Biol 2005, 170:103-113.
  • [41]Gherman A, Davis EE, Katsanis N: The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat Genet 2006, 38:961-962.
  • [42]Inglis PN, Boroevich KA, Leroux MR: Piecing together a ciliome. Trends Genet 2006, 22:491-500.
  • [43]Wagner V, Gessner G, Heiland I, Kaminski M, Hawat S, Scheffler K, Mittag M: Analysis of the phosphoproteome of Chlamydomonas reinhardtii provides new insights into various cellular pathways. Eukaryot Cell 2006, 5:457-468.
  • [44]Liu Q, Tan G, Levenkova N, Li T, Pugh EN Jr, Rux JJ, Speicher DW, Pierce EA: The proteome of the mouse photoreceptor sensory cilium complex. Mol Cell Proteomics 2007, 6:1299-1317.
  • [45]Mayer U, Kuller A, Daiber PC, Neudorf I, Warnken U, Schnolzer M, Frings S, Mohrlen F: The proteome of rat olfactory sensory cilia. Proteomics 2009, 9:322-334.
  • [46]Rosenbaum JL, Witman GB: Intraflagellar transport. Nat Rev Mol Cell Biol 2002, 3:813-825.
  • [47]Scholey JM: Intraflagellar transport. Annu Rev Cell Dev Biol 2003, 19:423-443.
  • [48]Pazour GJ: Intraflagellar transport and cilia-dependent renal disease: the ciliary hypothesis of polycystic kidney disease. J Am Soc Nephrol 2004, 15:2528-2536.
  • [49]Nachury MV, Seeley ES, Jin H: Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu Rev Cell Dev Biol 2010, 26:59-87.
  • [50]Ware SM, Aygun MG, Hildebrandt F: Spectrum of clinical diseases caused by disorders of primary cilia. Proc Am Thorac Soc 2011, 8:444-450.
  • [51]Verghese E, Weidenfeld R, Bertram JF, Ricardo SD, Deane JA: Renal cilia display length alterations following tubular injury and are present early in epithelial repair. Nephrol Dial Transplant 2008, 23:834-841.
  • [52]Kim J, Lee JE, Heynen-Genel S, Suyama E, Ono K, Lee K, Ideker T, Aza-Blanc P, Gleeson JG: Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 2010, 464:1048-1051.
  • [53]Tammachote R, Hommerding CJ, Sinders RM, Miller CA, Czarnecki PG, Leightner AC, Salisbury JL, Ward CJ, Torres VE, Gattone VH 2nd, Harris PC: Ciliary and centrosomal defects associated with mutation and depletion of the Meckel syndrome genes MKS1 and MKS3. Hum Mol Genet 2009, 18:3311-3323.
  • [54]Rios AC, Fu NY, Lindeman GJ, Visvader JE: In situ identification of bipotent stem cells in the mammary gland. Nature 2014, 506:322-327.
  • [55]Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D: Molecular portraits of human breast tumours. Nature 2000, 406:747-752.
  • [56]Kabos P, Haughian JM, Wang X, Dye WW, Finlayson C, Elias A, Horwitz KB, Sartorius CA: Cytokeratin 5 positive cells represent a steroid receptor negative and therapy resistant subpopulation in luminal breast cancers. Breast Cancer Res Treat 2011, 128:45-55.
  • [57]Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat ML, Gyorki DE, Ward T, Partanen A, Feleppa F, Huschtscha LI, Thorne HK, kConFab , Fox SB, Yan M, French JD, Brown MA, Smyth GK, Visvader JE, Lindeman GJ: Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 2009, 15:907-913.
  • [58]Boyd NF, Dite GS, Stone J, Gunasekara A, English DR, McCredie MR, Giles GG, Tritchler D, Chiarelli A, Yaffe MJ, Hopper JL: Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med 2002, 347:886-894.
  • [59]Pavelka N, Rancati G, Li R: Dr Jekyll and Mr Hyde: role of aneuploidy in cellular adaptation and cancer. Curr Opin Cell Biol 2011, 22:809-815.
  • [60]Dumont N, Liu B, Defilippis RA, Chang H, Rabban JT, Karnezis AN, Tjoe JA, Marx J, Parvin B, Tlsty TD: Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alteration of extracellular matrix characteristics. Neoplasia 2013, 15:249-262.
  文献评价指标  
  下载次数:27次 浏览次数:3次