期刊论文详细信息
Cell Division
Nek family of kinases in cell cycle, checkpoint control and cancer
Vuk Stambolic3  Nasir Haider2  Previn Dutt3  Larissa Moniz1 
[1] Centre for Cell Signalling, Barts Cancer Institute, Queen Mary University of London (QMUL), London EC1M 6BQ, UK;Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada;Ontario Cancer Institute/University Health Network, Toronto, Ontario, M5G 2M9, Canada
关键词: cancer;    cilia;    checkpoint control;    cell cycle;    Nek family;   
Others  :  792979
DOI  :  10.1186/1747-1028-6-18
 received in 2011-10-14, accepted in 2011-10-31,  发布年份 2011
PDF
【 摘 要 】

Early studies in lower Eukaryotes have defined a role for the members of the NimA related kinase (Nek) family of protein kinases in cell cycle control. Expansion of the Nek family throughout evolution has been accompanied by their broader involvement in checkpoint regulation and cilia biology. Moreover, mutations of Nek family members have been identified as drivers behind the development of ciliopathies and cancer. Recent advances in studying the physiological roles of Nek family members utilizing mouse genetics and RNAi-mediated knockdown are revealing intricate associations of Nek family members with fundamental biological processes. Here, we aim to provide a comprehensive account of our understanding of Nek kinase biology and their involvement in cell cycle, checkpoint control and cancer.

【 授权许可】

   
2011 Moniz et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705042116234.pdf 372KB PDF download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Oakley BR, Morris NR: A mutation in Aspergillus nidulans that blocks the transition from interphase to prophase. J Cell Biol 1983, 96:1155-1158.
  • [2]Morris NR: Mitotic mutants of Aspergillus nidulans. Genet Res 1975, 26:237-254.
  • [3]Wu L, Osmani SA, Mirabito PM: A role for NIMA in the nuclear localization of cyclin B in Aspergillus nidulans. J Cell Biol 1998, 141:1575-1587.
  • [4]Davies JR, Osmani AH, De Souza CP, Bachewich C, Osmani SA: Potential link between the NIMA mitotic kinase and nuclear membrane fission during mitotic exit in Aspergillus nidulans. Eukaryot Cell 2004, 3:1433-1444.
  • [5]De Souza CP, Osmani AH, Wu LP, Spotts JL, Osmani SA: Mitotic histone H3 phosphorylation by the NIMA kinase in Aspergillus nidulans. Cell 2000, 102:293-302.
  • [6]O'Connell MJ, Norbury C, Nurse P: Premature chromatin condensation upon accumulation of NIMA. Embo J 1994, 13:4926-4937.
  • [7]Lu KP, Hunter T: Evidence for a NIMA-like mitotic pathway in vertebrate cells. Cell 1995, 81:413-424.
  • [8]Pu RT, Osmani SA: Mitotic destruction of the cell cycle regulated NIMA protein kinase of Aspergillus nidulans is required for mitotic exit. Embo J 1995, 14:995-1003.
  • [9]Lu KP, Kemp BE, Means AR: Identification of substrate specificity determinants for the cell cycle-regulated NIMA protein kinase. J Biol Chem 1994, 269:6603-6607.
  • [10]Roig J, Mikhailov A, Belham C, Avruch J: Nercc1, a mammalian NIMA-family kinase, binds the Ran GTPase and regulates mitotic progression. Genes Dev 2002, 16:1640-1658.
  • [11]Richards MW, O'Regan L, Mas-Droux C, Blot JM, Cheung J, Hoelder S, Fry AM, Bayliss R: An autoinhibitory tyrosine motif in the cell-cycle-regulated Nek7 kinase is released through binding of Nek9. Mol Cell 2009, 36:560-570.
  • [12]Pu RT, Xu G, Wu L, Vierula J, O'Donnell K, Ye XS, Osmani SA: Isolation of a functional homolog of the cell cycle-specific NIMA protein kinase of Aspergillus nidulans and functional analysis of conserved residues. J Biol Chem 1995, 270:18110-18116.
  • [13]Krien MJ, Bugg SJ, Palatsides M, Asouline G, Morimyo M, O'Connell MJ: A NIMA homologue promotes chromatin condensation in fission yeast. J Cell Sci 1998, 111(Pt 7):967-976.
  • [14]O'Connell MJ, Krien MJ, Hunter T: Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol 2003, 13:221-228.
  • [15]Faragher AJ, Fry AM: Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. Mol Biol Cell 2003, 14:2876-2889.
  • [16]Fry AM, Meraldi P, Nigg EA: A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. Embo J 1998, 17:470-481.
  • [17]Fry AM, Mayor T, Meraldi P, Stierhof YD, Tanaka K, Nigg EA: C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J Cell Biol 1998, 141:1563-1574.
  • [18]Bahe S, Stierhof YD, Wilkinson CJ, Leiss F, Nigg EA: Rootletin forms centriole-associated filaments and functions in centrosome cohesion. J Cell Biol 2005, 171:27-33.
  • [19]Bahmanyar S, Kaplan DD, Deluca JG, Giddings TH, O'Toole ET, Winey M, Salmon ED, Casey PJ, Nelson WJ, Barth AI: beta-Catenin is a Nek2 substrate involved in centrosome separation. Genes Dev 2008, 22:91-105.
  • [20]Mardin BR, Lange C, Baxter JE, Hardy T, Scholz SR, Fry AM, Schiebel E: Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. Nat Cell Biol 2010, 12:1166-1176.
  • [21]Lou Y, Yao J, Zereshki A, Dou Z, Ahmed K, Wang H, Hu J, Wang Y, Yao X: NEK2A interacts with MAD1 and possibly functions as a novel integrator of the spindle checkpoint signaling. J Biol Chem 2004, 279:20049-20057.
  • [22]Sonn S, Khang I, Kim K, Rhee K: Suppression of Nek2A in mouse early embryos confirms its requirement for chromosome segregation. J Cell Sci 2004, 117:5557-5566.
  • [23]Sonn S, Jeong Y, Rhee K: Nip2/centrobin may be a substrate of Nek2 that is required for proper spindle assembly during mitosis in early mouse embryos. Mol Reprod Dev 2009, 76:587-592.
  • [24]Belham C, Comb MJ, Avruch J: Identification of the NIMA family kinases NEK6/7 as regulators of the p70 ribosomal S6 kinase. Curr Biol 2001, 11:1155-1167.
  • [25]Lizcano JM, Deak M, Morrice N, Kieloch A, Hastie CJ, Dong L, Schutkowski M, Reimer U, Alessi DR: Molecular basis for the substrate specificity of NIMA-related kinase-6 (NEK6). Evidence that NEK6 does not phosphorylate the hydrophobic motif of ribosomal S6 protein kinase and serum- and glucocorticoid-induced protein kinase in vivo. J Biol Chem 2002, 277:27839-27849.
  • [26]O'Regan L, Fry AM: The Nek6 and Nek7 protein kinases are required for robust mitotic spindle formation and cytokinesis. Mol Cell Biol 2009, 29:3975-3990.
  • [27]Bertran MT, Sdelci S, Regue L, Avruch J, Caelles C, Roig J: Nek9 is a Plk1-activated kinase that controls early centrosome separation through Nek6/7 and Eg5. Embo J 2011, 30:2634-2647.
  • [28]Salem H, Rachmin I, Yissachar N, Cohen S, Amiel A, Haffner R, Lavi L, Motro B: Nek7 kinase targeting leads to early mortality, cytokinesis disturbance and polyploidy. Oncogene 2010, 29:4046-4057.
  • [29]Feige E, Motro B: The related murine kinases, Nek6 and Nek7, display distinct patterns of expression. Mech Dev 2002, 110:219-223.
  • [30]Chang J, Baloh RH, Milbrandt J: The NIMA-family kinase Nek3 regulates microtubule acetylation in neurons. J Cell Sci 2009, 122:2274-2282.
  • [31]Doles J, Hemann MT: Nek4 status differentially alters sensitivity to distinct microtubule poisons. Cancer Res 2010, 70:1033-1041.
  • [32]Eley L, Yates LM, Goodship JA: Cilia and disease. Curr Opin Genet Dev 2005, 15:308-314.
  • [33]Dawe HR, Farr H, Gull K: Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J Cell Sci 2007, 120:7-15.
  • [34]Quarmby LM, Mahjoub MR: Caught Nek-ing: cilia and centrioles. J Cell Sci 2005, 118:5161-5169.
  • [35]Berbari NF, O'Connor AK, Haycraft CJ, Yoder BK: The primary cilium as a complex signaling center. Curr Biol 2009, 19:R526-535.
  • [36]Liu S, Lu W, Obara T, Kuida S, Lehoczky J, Dewar K, Drummond IA, Beier DR: A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish. Development 2002, 129:5839-5846.
  • [37]Upadhya P, Birkenmeier EH, Birkenmeier CS, Barker JE: Mutations in a NIMA-related kinase gene, Nek1, cause pleiotropic effects including a progressive polycystic kidney disease in mice. Proc Natl Acad Sci USA 2000, 97:217-221.
  • [38]Janaswami PM, Birkenmeier EH, Cook SA, Rowe LB, Bronson RT, Davisson MT: Identification and genetic mapping of a new polycystic kidney disease on mouse chromosome 8. Genomics 1997, 40:101-107.
  • [39]Vogler C, Homan S, Pung A, Thorpe C, Barker J, Birkenmeier EH, Upadhya P: Clinical and pathologic findings in two new allelic murine models of polycystic kidney disease. J Am Soc Nephrol 1999, 10:2534-2539.
  • [40]Mahjoub MR, Trapp ML, Quarmby LM: NIMA-related kinases defective in murine models of polycystic kidney diseases localize to primary cilia and centrosomes. J Am Soc Nephrol 2005, 16:3485-3489.
  • [41]Smith LA, Bukanov NO, Husson H, Russo RJ, Barry TC, Taylor AL, Beier DR, Ibraghimov-Beskrovnaya O: Development of polycystic kidney disease in juvenile cystic kidney mice: insights into pathogenesis, ciliary abnormalities, and common features with human disease. J Am Soc Nephrol 2006, 17:2821-2831.
  • [42]Thiel C, Kessler K, Giessl A, Dimmler A, Shalev SA, von der Haar S, Zenker M, Zahnleiter D, Stoss H, Beinder E, et al.: NEK1 mutations cause short-rib polydactyly syndrome type majewski. Am J Hum Genet 88:106-114.
  • [43]Sohara E, Luo Y, Zhang J, Manning DK, Beier DR, Zhou J: Nek8 regulates the expression and localization of polycystin-1 and polycystin-2. J Am Soc Nephrol 2008, 19:469-476.
  • [44]Chapin HC, Rajendran V, Caplan MJ: Polycystin-1 surface localization is stimulated by polycystin-2 and cleavage at the G protein-coupled receptor proteolytic site. Mol Biol Cell 21:4338-4348.
  • [45]White MC, Quarmby LM: The NIMA-family kinase, Nek1 affects the stability of centrosomes and ciliogenesis. BMC Cell Biol 2008, 9:29. BioMed Central Full Text
  • [46]Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S: Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 2004, 73:39-85.
  • [47]Reinhardt HC, Yaffe MB: Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol 2009, 21:245-255.
  • [48]Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD: Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 1998, 281:1677-1679.
  • [49]Stommel JM, Wahl GM: Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. Embo J 2004, 23:1547-1556.
  • [50]Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, Taya Y, Prives C, Abraham RT: A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 1999, 13:152-157.
  • [51]Dulic V, Kaufmann WK, Wilson SJ, Tlsty TD, Lees E, Harper JW, Elledge SJ, Reed SI: p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 1994, 76:1013-1023.
  • [52]Little JB, Nagasawa H, Keng PC, Yu Y, Li CY: Absence of radiation-induced G1 arrest in two closely related human lymphoblast cell lines that differ in p53 status. J Biol Chem 1995, 270:11033-11036.
  • [53]Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ Jr: A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 1992, 71:587-597.
  • [54]Boutros R, Dozier C, Ducommun B: The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 2006, 18:185-191.
  • [55]Melixetian M, Klein DK, Sorensen CS, Helin K: NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint. Nat Cell Biol 2009, 11:1247-1253.
  • [56]Donzelli M, Busino L, Chiesa M, Ganoth D, Hershko A, Draetta GF: Hierarchical order of phosphorylation events commits Cdc25A to betaTrCP-dependent degradation. Cell Cycle 2004, 3:469-471.
  • [57]Jin J, Shirogane T, Xu L, Nalepa G, Qin J, Elledge SJ, Harper JW: SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev 2003, 17:3062-3074.
  • [58]Dalal SN, Schweitzer CM, Gan J, DeCaprio JA: Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site. Mol Cell Biol 1999, 19:4465-4479.
  • [59]Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H: Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 1997, 277:1501-1505.
  • [60]Bulavin DV, Higashimoto Y, Popoff IJ, Gaarde WA, Basrur V, Potapova O, Appella E, Fornace AJ Jr: Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 2001, 411:102-107.
  • [61]Manke IA, Nguyen A, Lim D, Stewart MQ, Elia AE, Yaffe MB: MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol Cell 2005, 17:37-48.
  • [62]Mi J, Guo C, Brautigan DL, Larner JM: Protein phosphatase-1alpha regulates centrosome splitting through Nek2. Cancer Res 2007, 67:1082-1089.
  • [63]Chen Y, Chen PL, Chen CF, Jiang X, Riley DJ: Never-in-mitosis related kinase 1 functions in DNA damage response and checkpoint control. Cell Cycle 2008, 7:3194-3201.
  • [64]Polci R, Peng A, Chen PL, Riley DJ, Chen Y: NIMA-related protein kinase 1 is involved early in the ionizing radiation-induced DNA damage response. Cancer Res 2004, 64:8800-8803.
  • [65]Chen Y, Chen CF, Riley DJ, Chen PL: Nek1 kinase functions in DNA damage response and checkpoint control through a pathway independent of ATM and ATR. Cell Cycle 2011, 10:655-663.
  • [66]Moniz LS, Stambolic V: Nek10 mediates G2/M cell cycle arrest and MEK autoactivation in response to UV irradiation. Mol Cell Biol 2011, 31:30-42.
  • [67]Park JY, Schutzer WE, Lindsley JN, Bagby SP, Oyama TT, Anderson S, Weiss RH: p21 is decreased in polycystic kidney disease and leads to increased epithelial cell cycle progression: roscovitine augments p21 levels. BMC Nephrol 2007, 8:12. BioMed Central Full Text
  • [68]Abbott DW, Holt JT: Mitogen-activated protein kinase kinase 2 activation is essential for progression through the G2/M checkpoint arrest in cells exposed to ionizing radiation. J Biol Chem 1999, 274:2732-2742.
  • [69]Wu D, Chen B, Parihar K, He L, Fan C, Zhang J, Liu L, Gillis A, Bruce A, Kapoor A, Tang D: ERK activity facilitates activation of the S-phase DNA damage checkpoint by modulating ATR function. Oncogene 2006, 25:1153-1164.
  • [70]Yan Y, Black CP, Cowan KH: Irradiation-induced G2/M checkpoint response requires ERK1/2 activation. Oncogene 2007, 26:4689-4698.
  • [71]Yan Y, Spieker RS, Kim M, Stoeger SM, Cowan KH: BRCA1-mediated G2/M cell cycle arrest requires ERK1/2 kinase activation. Oncogene 2005, 24:3285-3296.
  • [72]Di Agostino S, Rossi P, Geremia R, Sette C: The MAPK pathway triggers activation of Nek2 during chromosome condensation in mouse spermatocytes. Development 2002, 129:1715-1727.
  • [73]Lou Y, Xie W, Zhang DF, Yao JH, Luo ZF, Wang YZ, Shi YY, Yao XB: Nek2A specifies the centrosomal localization of Erk2. Biochem Biophys Res Commun 2004, 321:495-501.
  • [74]Kokuryo T, Yamamoto T, Oda K, Kamiya J, Nimura Y, Senga T, Yasuda Y, Ohno Y, Nakanuma Y, Chen MF, et al.: Profiling of gene expression associated with hepatolithiasis by complementary DNA expression array. Int J Oncol 2003, 22:175-179.
  • [75]Tsunoda N, Kokuryo T, Oda K, Senga T, Yokoyama Y, Nagino M, Nimura Y, Hamaguchi M: Nek2 as a novel molecular target for the treatment of breast carcinoma. Cancer Sci 2009, 100:111-116.
  • [76]Suzuki K, Kokuryo T, Senga T, Yokoyama Y, Nagino M, Hamaguchi M: Novel combination treatment for colorectal cancer using Nek2 siRNA and cisplatin. Cancer Sci 2010, 101:1163-1169.
  • [77]Nassirpour R, Shao L, Flanagan P, Abrams T, Jallal B, Smeal T, Yin MJ: Nek6 mediates human cancer cell transformation and is a potential cancer therapeutic target. Mol Cancer Res 2010, 8:717-728.
  • [78]Jee HJ, Kim AJ, Song N, Kim HJ, Kim M, Koh H, Yun J: Nek6 overexpression antagonizes p53-induced senescence in human cancer cells. Cell Cycle 2010, 9:4703-4710.
  • [79]Jee HJ, Kim HJ, Kim AJ, Song N, Kim M, Yun J: Nek6 suppresses the premature senescence of human cancer cells induced by camptothecin and doxorubicin treatment. Biochem Biophys Res Commun 2011, 408:669-673.
  • [80]Ahmed S, Thomas G, Ghoussaini M, Healey CS, Humphreys MK, Platte R, Morrison J, Maranian M, Pooley KA, Luben R, et al.: Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet 2009, 41:585-590.
  • [81]Antoniou AC, Beesley J, McGuffog L, Sinilnikova OM, Healey S, Neuhausen SL, Ding YC, Rebbeck TR, Weitzel JN, Lynch HT, et al.: Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction. Cancer Res 2010, 70:9742-9754.
  • [82]Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, et al.: Patterns of somatic mutation in human cancer genomes. Nature 2007, 446:153-158.
  • [83]Davies H, Hunter C, Smith R, Stephens P, Greenman C, Bignell G, Teague J, Butler A, Edkins S, Stevens C, et al.: Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res 2005, 65:7591-7595.
  • [84]Miller SL, Antico G, Raghunath PN, Tomaszewski JE, Clevenger CV: Nek3 kinase regulates prolactin-mediated cytoskeletal reorganization and motility of breast cancer cells. Oncogene 2007, 26:4668-4678.
  • [85]Belham C, Roig J, Caldwell JA, Aoyama Y, Kemp BE, Comb M, Avruch J: A mitotic cascade of NIMA family kinases. Nercc1/Nek9 activates the Nek6 and Nek7 kinases. J Biol Chem 2003, 278:34897-34909.
  • [86]Bowers AJ, Boylan JF: Nek8, a NIMA family kinase member, is overexpressed in primary human breast tumors. Gene 2004, 328:135-142.
  文献评价指标  
  下载次数:1次 浏览次数:9次