期刊论文详细信息
Journal of Molecular Psychiatry
Astrocytes reassessment - an evolving concept part one: embryology, biology, morphology and reactivity
Adina Bianca Boşca1  Alina Simona Şovrea1 
[1] Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
关键词: Therapeutic targets;    Molecular mechanisms;    Reactive astrogliosis;    Astrocytes;   
Others  :  819973
DOI  :  10.1186/2049-9256-1-18
 received in 2013-06-07, accepted in 2013-08-05,  发布年份 2013
PDF
【 摘 要 】

The goal of this review is to integrate - in its two parts - the considerable amount of information that has accumulated during these recent years over the morphology, biology and functions of astrocytes - first part - and to illustrate the active role of these cells in pathophysiological processes implicated in various psychiatric and neurologic disorders – second part.

【 授权许可】

   
2013 Şovrea and Boşca; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712020820636.pdf 3228KB PDF download
Figure 6. 231KB Image download
Figure 5. 302KB Image download
Figure 4. 144KB Image download
Figure 3. 200KB Image download
Figure 2. 296KB Image download
Figure 1. 263KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Wang DD, Bordey A: The astrocyte odyssey. Prog Neurobiol 2008, 86(4):342-367.
  • [2]Parpura V, Verkhratsky A: Neuroglia at the crossroads of homoeostasis, metabolism and signalling: evolution of the concept. ASN Neuro 2012, 4(4):201-205.
  • [3]Oberheim NA, Goldman SA, Nedergaard M: Heterogeneity of astrocytic form and function. Methods Mol Biol 2012, 814:23-45.
  • [4]Andriezen WL: The neuroglia elements in the human brain. Br Med J 1893, 2(1700):227-230.
  • [5]Parpura V, Verkhratsky A: Astrocytes revisited: concise historic outlook on glutamate homeostasis and signaling. Croat Med J 2012, 53(6):518-528.
  • [6]Kimelberg HK, Nedergaard M: Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 2010, 7(4):338-353.
  • [7]Bélanger M, Magistretti PJ: The role of astroglia in neuroprotection. Dialogues Clin Neurosci 2009, 11(3):281-295.
  • [8]Haas C, Neuhuber B, Yamagami T, Rao M, Fischer I: Phenotypic analysis of astrocytes derived from glial restricted precursors and their impact on axon regeneration. Exp Neurol 2012 Feb, 233(2):717-732.
  • [9]Kang W, Hébert JM: Signaling pathways in reactive astrocytes, a genetic perspective. Mol Neurobiol 2011, 43(3):147-154.
  • [10]Wiese S, Karus M, Faissner A: Astrocytes as a source for extracellular matrix molecules and cytokines. Front Pharmacol 2012, 3:120.
  • [11]Malatesta P, Hartfuss E, Götz M: Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 2000, 127(24):5253-5263.
  • [12]Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR: Neurons derived from radial glial cells establish radial units in neocortex. Nature 2001, 409(6821):714-720.
  • [13]Liu Y, Wu Y, Lee JC, Xue H, Pevny LH, Kaprielian Z, Rao MS: Oligodendrocyte and astrocyte development in rodents: an in situ and immunohistological analysis during embryonic development. Glia 2002, 40(1):25-43.
  • [14]Cai J, Chen Y, Cai WH, Hurlock EC, Wu H, Kernie SG, Parada LF, Lu QR: A crucial role for Olig2 in white matter astrocyte development. Development 2007, 134(10):1887-1999.
  • [15]Liu Y, Rao MS: Glial progenitors in the CNS and possible lineage relationships among them. Biol Cell 2004, 96(4):279-290.
  • [16]Schmechel DE, Rakic PA: Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol (Berl) 1979, 156(2):115-152.
  • [17]Gates MA, Thomas LB, Howard EM, Laywell ED, Sajin B, Faissner A, Götz B, Silver J, Steindler DA: Cell and molecular analysis of the developing and adult mouse subventricular zone of the cerebral hemispheres. J Comp Neurol 1995, 361(2):249-266.
  • [18]Cameron HA, Woolley CS, McEwen BS, Gould E: Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 1993, 56(2):337-344.
  • [19]Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A: Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999, 97(6):703-716.
  • [20]Seri B, García-Verdugo JM, McEwen BS, Alvarez-Buylla A: Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 2001, 21(18):7153-7160.
  • [21]Altman J: Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 1969, 137(4):433-457.
  • [22]Luskin MB: Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 1993, 11(1):173-189.
  • [23]Fuller GN, Burger PC: Central nervous system in Histology for pathologists. Edited by Sternberg SS. New York: Raven Press; 1992:145-167.
  • [24]Burger PC, Scheithauer BW: Tumors of the Central Nervous System-Armed Forces Institute of Pathology. Atlas of Tumor Pathology 3rd edition. 1993. Series Fascicle 10
  • [25]Liu X, Bolteus AJ, Balkin DM, Henschel O, Bordey A: GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes. Glia 2006, 54(5):394-410.
  • [26]Spassky N, Merkle FT, Flames N, Tramontin AD, García-Verdugo JM, Alvarez-Buylla A: Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 2005, 25(1):10-18.
  • [27]Buniatian GH, Hartmann HJ, Traub P, Wiesinger H, Albinus M, Nagel W, Shoeman R, Mecke D, Weser U: Glial fibrillary acidic protein-positive cells of the kidney are capable of raising a protective biochemical barrier similar to astrocytes: expression of metallothionein in podocytes. Anat Rec 2002, 267(4):296-306.
  • [28]Davidoff MS, Middendorff R, Köfüncü E, Müller D, Jezek D, Holstein AF: Leydig cells of the human testis possess astrocyte and oligodendrocyte marker molecules. Acta Histochem 2002, 104(1):39-49.
  • [29]Danielyan L, Tolstonog G, Traub P, Salvetter J, Gleiter CH, Reisig D, Gebhardt R, Buniatian GH: Colocalization of glial fibrillary acidic protein, metallothionein, and MHC II in human, rat, NOD/SCID, and nude mouse skin keratinocytes and fibroblasts. J Invest Dermatol 2007, 127(3):555-563.
  • [30]Kasantikul V, Shuangshoti S: Positivity to glial fibrillary acidic protein in bone, cartilage, and chordoma. J Surg Oncol 1989, 41(1):22-26.
  • [31]Baudier J, Glasser N, Gerard D: Ions binding to S100 proteins. I. Calcium- and zinc-binding properties of bovine brain S100 alpha alpha, S100a (alpha beta), and S100b (beta beta) protein: Zn2+ regulates Ca2+ binding on S100b protein. J Biol Chem 1986, 261(18):8192-8203.
  • [32]Schousboe A: Role of astrocytes in the maintenance and modulation of glutamatergic and GABAergic neurotransmission. Neurochem Res 2003, 28(2):347-352.
  • [33]Martinez-Hernandez A, Bell KP, Norenberg MD: Glutamine synthetase: glial localization in brain. Science 1977, 195(4284):1356-1358.
  • [34]Cammer W: Glutamine synthetase in the central nervous system is not confined to astrocytes. J Neuroimmunol 1990, 26(2):173-178.
  • [35]D’Amelio F, Eng LF, Gibbs MA: Glutamine synthetase immunoreactivity is present in oligodendroglia of various regions of the central nervous system. Glia 1990, 3(5):335-341.
  • [36]Takumi T, Ishii T, Horio Y, Morishige K, Takahashi N, Yamada M, Yamashita T, Kiyama H, Sohmiya K, Nakanishi S: A novel ATP-dependent inward rectifier potassium channel expressed predominantly in glial cells. J Biol Chem 1995, 270(27):16339-16346.
  • [37]Higashi K, Fujita A, Inanobe A, Tanemoto M, Doi K, Kubo T, Kurachi Y: An inwardly rectifying K(+) channel, Kir4.1, Expressed in astrocytes surrounds synapses and blood vessels in brain. Am J Physiol Cell Physiol 2001, 281(3):C922-C931.
  • [38]Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP: Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 1997, 17(1):171-180.
  • [39]Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA: A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 2008, 28(1):264-278.
  • [40]Emsley JG, Macklis JD: Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS. Neuron Glia Biol 2006, 2(3):175-186.
  • [41]Nishiyama A, Yang Z, Butt A: Astrocytes and NG2-glia: what’s in a name? J Anat 2005, 207(6):687-693.
  • [42]Fiacco T, Casper K, Sweger E, Agulhon C, Taves S, Kurtzer-Minton S: Molecular approaches for studying astrocytes. In Astrocytes in (patho)physiology of the nervous system. Edited by Parpura V, Haydon PG. New York: Springer; 2009:383-405.
  • [43]Bushong EA, Martone ME, Jones YZ, Ellisman MH: Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 2002, 22:183-192.
  • [44]Ogata K, Kosaka T: Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 2002, 113:221-233.
  • [45]Sofroniew MV, Vinters HV: Astrocytes: biology and pathology. Acta Neuropathol 2010, 119:7-35.
  • [46]Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M: Uniquely hominid features of adult human astrocytes. J Neurosci 2009, 29:3276-3287.
  • [47]Retzius G: Die neuroglia des gehirns beim menschen und bei saeugethieren. Biol Untersuchungen 1894, 6:1-28.
  • [48]Colombo JA, Reisin HD: Interlaminar astroglia of the cerebral cortex: a marker of the primate brain. Brain Res 2004, 1006:126-131.
  • [49]Colombo JA, Yanez A, Puissant V, Lipina S: Long, interlaminar astroglial cell processes in the cortex of adult monkeys. J Neurosci Res 1995, 40:551-556.
  • [50]Oberheim NA, Wang X, Goldman S, Nedergaard M: Astrocytic complexity distinguishes the human brain. Trends Neurosci 2006, 29:547-553.
  • [51]Nishiyama A, Watanabe M, Yang Z, Bu J: Identity, distribution, and development of polydendrocytes: NG2-expressing glial cells. J Neurocytol 2002, 31:437-455.
  • [52]Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW: Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 2007, 450:56-62.
  • [53]Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG: Synaptic islands defined by the territory of a single astrocyte. J Neurosci 2007, 27:6473-6477.
  • [54]Oberheim NA, Tian GF, Han X, Peng W, Takano T, Ransom B, Nedergaard M: Loss of astrocytic domain organization in the epileptic brain. J Neurosci 2008, 28:3264-3276.
  • [55]Benediktsson AM, Schachtele SJ, Green SH, Dailey ME: Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures. J Neurosci Methods 2005, 141:41-53.
  • [56]Hirrlinger J, Hulsmann S, Kirchhoff F: Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci 2004, 20:2235-2239.
  • [57]Hewett JA: Determinants of regional and local diversity within the astroglial lineage of the normal central nervous system. J Neurochem 2009, 110:1717-1736.
  • [58]Silver J, Miller JH: Regeneration beyond the glial scar. Nat Rev Neurosci 2004, 5:146-156.
  • [59]Pekny M, Nilsson M: Astrocyte activation and reactive gliosis. Glia 2005, 50:427-434.
  • [60]Sofroniew MV: Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 2009, 32(12):638-647.
  • [61]Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH, Sofroniew MV: Leukocyte infiltration, neuronal degeneration and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 1999, 23:297-308.
  • [62]Herrmann JE, Imura T, Song B, Qi J, Ao Y, Nguyen TK, Korsak RA, Takeda K, Akira S, Sofroniew MV: STAT3 Is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 2008, 28:7231-7243.
  • [63]Brambilla R, Bracchi-Ricard V, Hu WH, Frydel B, Bramwell A, Karmally S, Green EJ, Bethea JR: Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med 2005, 202:145-156.
  • [64]Codeluppi S, Svensson CI, Hefferan MP, Valencia F, Silldorff MD, Oshiro M, Marsala M, Pasquale EB: The rheb-mTOR pathway is upregulated in reactive astrocytes of the injured spinal cord. J Neurosci 2009, 29:1093-1104.
  • [65]Chen Y, Miles DK, Hoang T, Shi J, Hurlock E, Kernie SG, Lu QR: The basic helix-loop-helix transcription factor olig2 is critical for reactive astrocyte proliferation after cortical injury. J Neurosci 2008, 28:10983-10989.
  • [66]Eddleston M, Mucke L: Molecular profile of reactive astrocytes -implications for their role in neurological disease. Neuroscience 1993, 54:15-36.
  • [67]Swanson RA, Ying W, Kauppinen TM: Astrocyte influences on ischemic neuronal death. Curr Mol Med 2004, 4:193-205.
  • [68]Chen Y, Vartiainen NE, Ying W, Chan PH, Koistinaho J, Swanson RA: Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem 2001, 77:1601-1610.
  • [69]John GR, Lee SC, Brosnan CF: Cytokines: powerful regulators of glial cell activation. Neuroscientist 2003, 9:10-22.
  • [70]Zador Z, Stiver S, Wang V, Manley GT: Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol 2009, 190:159-170.
  • [71]Simard M, Nedergaard M: The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 2004, 129:877-896.
  • [72]Maragakis NJ, Rothstein JD: Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2006, 2:679-689.
  • [73]Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF: Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996, 16:675-686.
  • [74]Iadecola C, Nedergaard M: Glial regulation of the cerebral microvasculature. Nat Neurosci 2007, 10:1369-1376.
  • [75]Gordon GR, Mulligan SJ, MacVicar BA: Astrocyte control of the cerebrovasculature. Glia 2007, 55:1214-1221.
  • [76]Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ: Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 2007, 55:1251-1262.
  • [77]Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA: Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 2005, 120:421-433.
  • [78]Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA: The classical complement cascade mediates CNS synapse elimination. Cell 2007, 131:1164-1178.
  • [79]Hamby ME, Hewett JA, Hewett SJ: TGF-beta1 potentiates astrocytic nitric oxide production by expanding the population of astrocytes that express NOS-2. Glia 2006, 54:566-577.
  • [80]Lee S, Park JY, Lee WH, Kim H, Park HC, Mori K, Suk K: Lipocalin-2 is an autocrine mediator of reactive astrocytosis. J Neurosci 2009, 29:234-249.
  • [81]Gadea A, Schinelli S, Gallo V: Endothelin-1 regulates astrocyte proliferation and reactive gliosis via a JNK/c-Jun signaling pathway. J Neurosci 2008, 28:2394-2408.
  • [82]Panenka W, Jijon H, Herx LM, Armstrong JN, Feighan D, Wei T, Yong VW, Ransohoff RM, MacVicar BA: P2X7-Like receptor activation in astrocytes increases Chemokine Monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase. J Neurosci 2001, 21:7135-7142.
  • [83]Farina C, Aloisi F, Meinl E: Astrocytes are active players in cerebral innate immunity. Trends Immunol 2007, 28:138-145.
  • [84]Bekar LK, He W, Nedergaard M: Locus coeruleus alpha-adrenergic-mediated activation of cortical astrocytes in vivo. Cereb Cortex 2008, 18:2789-2795.
  • [85]Simpson JE, Ince PG, Lace G, Forster G, Shaw PJ, Matthews F, Savva G, Brayne C, Wharton SB: Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiol Aging 2008.
  • [86]Neary JT, Kang Y, Willoughby KA, Ellis EF: Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci 2003, 23:2348-2356.
  • [87]De Keyser J, Mostert JP, Koch MW: Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 2008, 267:3-16.
  • [88]Gris P, Tighe A, Levin D, Sharma R, Brown A: Transcriptional regulation of scar gene expression in primary astrocytes. Glia 2007, 55:1145-1155.
  • [89]Voskuhl RR, Peterson RS, Song B, Ao Y, Morales LB, Tiwari-Woodruff S, Sofroniew MV: Reactive astrocytes form scar-like barriers to leukocytes during adaptive immune inflammation of the central nervous system. J Neurosci 2009.
  • [90]Hamby ME, Sofronew MV: Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 2010, 7(4):494-506.
  文献评价指标  
  下载次数:27次 浏览次数:15次