期刊论文详细信息
EvoDevo
Genome-wide survey and expression analysis of the bHLH-PAS genes in the amphioxus Branchiostoma floridae reveal both conserved and diverged expression patterns between cephalochordates and vertebrates
Jr-Kai Yu2  Tsai-Ming Lu1  Kun-Lung Li2 
[1] Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan;Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan
关键词: Molecular phylogeny;    Embryonic development;    Branchiostoma floridae;    bHLH-PAS transcription factors;    Amphioxus;   
Others  :  801164
DOI  :  10.1186/2041-9139-5-20
 received in 2014-02-10, accepted in 2014-05-07,  发布年份 2014
PDF
【 摘 要 】

Background

The bHLH-PAS transcription factors are found in both protostomes and deuterostomes. They are involved in many developmental and physiological processes, including regional differentiation of the central nervous system, tube-formation, hypoxia signaling, aromatic hydrocarbon sensing, and circadian rhythm regulation. To understand the evolution of these genes in chordates, we analyzed the bHLH-PAS genes of the basal chordate amphioxus (Branchiostoma floridae).

Results

From the amphioxus draft genome database, we identified ten bHLH-PAS genes, nine of which could be assigned to known orthologous families. The tenth bHLH-PAS gene could not be assigned confidently to any known bHLH family; however, phylogenetic analysis clustered this gene with arthropod Met family genes and two spiralian bHLH-PAS-containing sequences, suggesting that they may share the same ancestry. We examined temporal and spatial expression patterns of these bHLH-PAS genes in developing amphioxus embryos. We found that BfArnt, BfNcoa, BfSim, and BfHifα were expressed in the central nervous system in patterns similar to those of their vertebrate homologs, suggesting that their functions may be conserved. By contrast, the amphioxus BfAhr and BfNpas4 had expression patterns distinct from those in vertebrates. These results imply that there were changes in gene regulation after the divergence of cephalochordates and vertebrates.

Conclusions

We have identified ten bHLH-PAS genes from the amphioxus genome and determined the embryonic expression profiles for these genes. In addition to the nine currently recognized bHLH-PAS families, our survey suggests that the BfbHLHPAS-orphan gene along with arthropod Met genes and the newly identified spiralian bHLH-PAS-containing sequences represent an ancient group of genes that were lost in the vertebrate lineage. In a comparison with the expression patterns of the vertebrate bHLH-PAS paralogs, which are the result of whole-genome duplication, we found that although several members seem to retain conserved expression patterns during chordate evolution, many duplicated paralogs may have undergone subfunctionalization and neofunctionalization in the vertebrate lineage. In addition, our survey of amphioxus bHLH-PAS gene models from genome browser with experimentally verified cDNA sequences calls into question the accuracy of the current in silico gene annotation of the B. floridae genome.

【 授权许可】

   
2014 Li et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708003703111.pdf 1602KB PDF download
Figure 10. 206KB Image download
Figure 9. 142KB Image download
Figure 8. 89KB Image download
Figure 7. 160KB Image download
Figure 6. 125KB Image download
Figure 5. 133KB Image download
Figure 4. 130KB Image download
Figure 3. 131KB Image download
Figure 2. 81KB Image download
Figure 1. 169KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Ferre-D’Amare AR, Prendergast GC, Ziff EB, Burley SK: Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 1993, 363:38-45.
  • [2]Massari ME, Murre C: Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 2000, 20:429-440.
  • [3]Ledent V, Paquet O, Vervoort M: Phylogenetic analysis of the human basic helix-loop-helix proteins. Genome Biol 2002, 3:RESEARCH0030.
  • [4]Simionato E, Ledent V, Richards G, Thomas-Chollier M, Kerner P, Coornaert D, Degnan BM, Vervoort M: Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics. BMC Evol Biol 2007, 7:33. BioMed Central Full Text
  • [5]Crews ST: Control of cell lineage-specific development and transcription by bHLH-PAS proteins. Genes Dev 1998, 12:607-620.
  • [6]Nambu JR, Lewis JO, Wharton KAJ, Crews ST: The Drosophila single-minded gene encodes a helix-loop-helix protein that acts as a master regulator of CNS midline development. Cell 1991, 67:1157-1167.
  • [7]McIntosh BE, Hogenesch JB, Bradfield CA: Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annu Rev Physiol 2010, 72:625-645.
  • [8]Taylor BL, Zhulin IB: PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 1999, 63:479-506.
  • [9]Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS: The Trichoplax genome and the nature of placozoans. Nature 2008, 454:955-960.
  • [10]Loenarz C, Coleman ML, Boleininger A, Schierwater B, Holland PWH, Ratcliffe PJ, Schofield CJ: The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO Rep 2011, 12:63-70.
  • [11]Satou Y, Wada S, Sasakura Y, Satoh N: Regulatory genes in the ancestral chordate genomes. Dev Genes Evol 2008, 218:715-721.
  • [12]Wilk R, Weizman I, Shilo BZ: Trachealess encodes a bHLH-PAS protein that is an inducer of tracheal cell fates in Drosophila. Genes Dev 1996, 10:93-102.
  • [13]Levesque BM, Zhou S, Shan L, Johnston P, Kong Y, Degan S, Sunday ME: NPAS1 regulates branching morphogenesis in embryonic lung. Am J Respir Cell Mol Biol 2007, 36:427-434.
  • [14]Zhou S, Degan S, Potts EN, Foster WM, Sunday ME: NPAS3 is a trachealess homolog critical for lung development and homeostasis. Proc Natl Acad Sci U S A 2009, 106:11691-11696.
  • [15]Hampton-Smith RJ, Peet DJ: From polyps to people: a highly familiar response to hypoxia. Ann N Y Acad Sci 2009, 1177:19-29.
  • [16]Kaelin WG Jr, Ratcliffe PJ: Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 2008, 30:393-402.
  • [17]Abel J, Haarmann-Stemmann T: An introduction to the molecular basics of aryl hydrocarbon receptor biology. Biol Chem 2010, 391:1235-1248.
  • [18]Hahn ME, Allan LL, Sherr DH: Regulation of constitutive and inducible AHR signaling: complex interactions involving the AHR repressor. Biochem Pharmacol 2009, 77:485-497.
  • [19]Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ: Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 2005, 6:544-556.
  • [20]Ko CH, Takahashi JS: Molecular components of the mammalian circadian clock. Hum Mol Genet 2006, 15 Spec No 2:R271-277.
  • [21]Konopova B, Jindra M: Juvenile hormone resistance gene Methoprene-tolerant controls entry into metamorphosis in the beetle Tribolium castaneum. Proc Natl Acad Sci U S A 2007, 104:10488-10493.
  • [22]Ooe N, Saito K, Mikami N, Nakatuka I, Kaneko H: Identification of a novel basic helix-loop-helix-PAS factor, NXF, reveals a Sim2 competitive, positive regulatory role in dendritic-cytoskeleton modulator drebrin gene expression. Mol Cell Biol 2004, 24:608-616.
  • [23]Ooe N, Motonaga K, Kobayashi K, Saito K, Kaneko H: Functional characterization of basic helix-loop-helix-PAS type transcription factor NXF in vivo: putative involvement in an “on demand” neuroprotection system. J Biol Chem 2009, 284:1057-1063.
  • [24]Ploski JE, Monsey MS, Nguyen T, DiLeone RJ, Schafe GE: The neuronal PAS domain protein 4 (Npas4) is required for new and reactivated fear memories. PLoS One 2011, 6:e23760.
  • [25]Jiang L, Crews ST: The Drosophila dysfusion basic helix-loop-helix (bHLH)-PAS gene controls tracheal fusion and levels of the trachealess bHLH-PAS protein. Mol Cell Biol 2003, 23:5625-5637.
  • [26]Jiang L, Crews ST: Dysfusion transcriptional control of Drosophila tracheal migration, adhesion, and fusion. Mol Cell Biol 2006, 26:6547-6556.
  • [27]Panopoulou G, Poustka AJ: Timing and mechanism of ancient vertebrate genome duplications – the adventure of a hypothesis. Trends Genet 2005, 21:559-567.
  • [28]Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutierrez EL, Dubchak I, Garcia-Fernandez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, et al.: The amphioxus genome and the evolution of the chordate karyotype. Nature 2008, 453:1064-1071.
  • [29]Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H, Kohn AB, Heyland A, Moroz LL, Copley RR, Telford MJ: Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 2006, 444:85-88.
  • [30]Delsuc F, Brinkmann H, Chourrout D, Philippe H: Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 2006, 439:965-968.
  • [31]Delsuc F, Tsagkogeorga G, Lartillot N, Philippe H: Additional molecular support for the new chordate phylogeny. Genesis 2008, 46:592-604.
  • [32]Holland LZ, Albalat R, Azumi K, Benito-Gutierrez E, Blow MJ, Bronner-Fraser M, Brunet F, Butts T, Candiani S, Dishaw LJ, Ferrier DE, Garcia-Fernandez J, Gibson-Brown JJ, Gissi C, Godzik A, Hallbook F, Hirose D, Hosomichi K, Ikuta T, Inoko H, Kasahara M, Kasamatsu J, Kawashima T, Kimura A, Kobayashi M, Kozmik Z, Kubokawa K, Laudet V, Litman GW, McHardy AC, et al.: The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res 2008, 18:1100-1111.
  • [33]Yu JK, Wang MC, Shin IT, Kohara Y, Holland LZ, Satoh N, Satou Y: A cDNA resource for the cephalochordate amphioxus Branchiostoma floridae. Dev Genes Evol 2008, 218:723-727.
  • [34]Wang YB, Chen SH, Lin CY, Yu JK: EST and transcriptome analysis of cephalochordate amphioxus–past, present and future. Brief Funct Genomics 2012, 11:96-106.
  • [35]The DOE Joint Genome Institute Branchiostoma floridae Genome Database http://genome.jgi-psf.org/Brafl1/Brafl1.home.html webcite
  • [36]Satou Y, Imai KS, Levine M, Kohara Y, Rokhsar D, Satoh N: A genomewide survey of developmentally relevant genes in Ciona intestinalis. I. Genes for bHLH transcription factors. Dev Genes Evol 2003, 213:213-221.
  • [37]Langeland JA, Tomsa JM, Jackman WR Jr, Kimmel CB: An amphioxus snail gene: expression in paraxial mesoderm and neural plate suggests a conserved role in patterning the chordate embryo. Dev Genes Evol 1998, 208:569-577.
  • [38]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD: The Pfam protein families database. Nucleic Acids Res 2012, 40:D290-301.
  • [39]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
  • [40]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999, 41:95-98.
  • [41]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [42]Stamatakis A: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30:1312-1313.
  • [43]Miller MA, Pfeiffer W, Schwartz T: Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE): 14 November 2010; New Orleans, LA. Piscataway, NJ: IEEE; 2010:1-8.
  • [44]Genome Browser for Branchiostoma belcheri http://mosas.sysu.edu.cn/genome/ webcite
  • [45]Huang S, Chen Z, Huang G, Yu T, Yang P, Li J, Fu Y, Yuan S, Chen S, Xu A: HaploMerger: reconstructing allelic relationships for polymorphic diploid genome assemblies. Genome Res 2012, 22:1581-1588.
  • [46]Simakov O, Marletaz F, Cho SJ, Edsinger-Gonzales E, Havlak P, Hellsten U, Kuo DH, Larsson T, Lv J, Arendt D, Savage R, Osoegawa K, de Jong P, Grimwood J, Chapman JA, Shapiro H, Aerts A, Otillar RP, Terry AY, Boore JL, Grigoriev IV, Lindberg DR, Seaver EC, Weisblat DA, Putnam NH, Rokhsar DS: Insights into bilaterian evolution from three spiralian genomes. Nature 2013, 493:526-531.
  • [47]Yu JK, Holland LZ: Amphioxus (Branchiostoma floridae) spawning and embryo collection. Cold Spring Harb Protoc 2009. doi:10.1101/pdb.prot5285
  • [48]Hirakow R, Kajita N: Electron microscopic study of the development of amphioxus, Branchiostoma belcheri tsingtauense: the gastrula. J Morphol 1991, 207:37-52.
  • [49]Hirakow R, Kajita N: Electron microscopic study of the development of amphioxus, Branchiostoma belcheri tsingtauense: the neurula and larva. Kaibogaku Zasshi 1994, 69:1-13.
  • [50]Lu TM, Luo YJ, Yu JK: BMP and Delta/Notch signaling control the development of amphioxus epidermal sensory neurons: insights into the evolution of the peripheral sensory system. Development 2012, 139:2020-2030.
  • [51]Wu HR, Chen YT, Su YH, Luo YJ, Holland LZ, Yu JK: Asymmetric localization of germline markers Vasa and Nanos during early development in the amphioxus Branchiostoma floridae. Dev Biol 2011, 353:147-159.
  • [52]Wheelan SJ, Church DM, Ostell JM: Spidey: a tool for mRNA-to-genomic alignments. Genome Res 2001, 11:1952-1957.
  • [53]Spidey: A Tool for mRNA-to-genomic Alignments http://www.ncbi.nlm.nih.gov/spidey/ webcite
  • [54]Schomerus C, Korf HW, Laedtke E, Moret F, Zhang Q, Wicht H: Nocturnal behavior and rhythmic period gene expression in a lancelet, Branchiostoma lanceolatum. J Biol Rhythms 2008, 23:170-181.
  • [55]Mazet F, Shimeld SM: The evolution of chordate neural segmentation. Dev Biol 2002, 251:258-270.
  • [56]Satoh G, Wang Y, Zhang P, Satoh N: Early development of amphioxus nervous system with special reference to segmental cell organization and putative sensory cell precursors: a study based on the expression of pan-neuronal marker gene Hu/elav. J Exp Zool 2001, 291:354-364.
  • [57]Ledent V, Vervoort M: The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res 2001, 11:754-770.
  • [58]Chen Y, Ding Y, Zhang Z, Wang W, Chen JY, Ueno N, Mao B: Evolution of vertebrate central nervous system is accompanied by novel expression changes of duplicate genes. J Genet Genomics 2011, 38:577-584.
  • [59]Gao S, Lu L, Bai Y, Zhang P, Song W, Duan C: Structural and functional analysis of amphioxus HIFalpha reveals ancient features of the HIFalpha family. FASEB J 2014, 28:1880-1890.
  • [60]Wicht H, Laedtke E, Korf HW, Schomerus C: Spatial and temporal expression patterns of Bmal delineate a circadian clock in the nervous system of Branchiostoma lanceolatum. J Comp Neurol 2010, 518:1837-1846.
  • [61]Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J: Preservation of duplicate genes by complementary, degenerative mutations. Genetics 1999, 151:1531-1545.
  • [62]Jain S, Maltepe E, Lu MM, Simon C, Bradfield CA: Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse. Mech Dev 1998, 73:117-123.
  • [63]Jiang H, Guo R, Powell-Coffman JA: The Caenorhabditis elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia. Proc Natl Acad Sci U S A 2001, 98:7916-7921.
  • [64]Sonnenfeld M, Ward M, Nystrom G, Mosher J, Stahl S, Crews S: The Drosophila tango gene encodes a bHLH-PAS protein that is orthologous to mammalian Arnt and controls CNS midline and tracheal development. Development 1997, 124:4571-4582.
  • [65]Aitola MH, Pelto-Huikko MT: Expression of Arnt and Arnt2 mRNA in developing murine tissues. J Histochem Cytochem 2003, 51:41-54.
  • [66]Auger AP, Tetel MJ, McCarthy MM: Steroid receptor coactivator-1 (SRC-1) mediates the development of sex-specific brain morphology and behavior. Proc Natl Acad Sci U S A 2000, 97:7551-7555.
  • [67]Misiti S, Koibuchi N, Bei M, Farsetti A, Chin WW: Expression of steroid receptor coactivator-1 mRNA in the developing mouse embryo: a possible role in olfactory epithelium development. Endocrinology 1999, 140:1957-1960.
  • [68]Meijer OC, Steenbergen PJ, De Kloet ER: Differential expression and regional distribution of steroid receptor coactivators SRC-1 and SRC-2 in brain and pituitary. Endocrinology 2000, 141:2192-2199.
  • [69]Bai J, Uehara Y, Montell DJ: Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell 2000, 103:1047-1058.
  • [70]Berger J, Senti KA, Senti G, Newsome TP, Asling B, Dickson BJ, Suzuki T: Systematic identification of genes that regulate neuronal wiring in the Drosophila visual system. PLoS Genet 2008, 4:e1000085.
  • [71]Duncan DM, Burgess EA, Duncan I: Control of distal antennal identity and tarsal development in Drosophila by spineless-aristapedia, a homolog of the mammalian dioxin receptor. Genes Dev 1998, 12:1290-1303.
  • [72]Emmons RB, Duncan D, Estes PA, Kiefel P, Mosher JT, Sonnenfeld M, Ward MP, Duncan I, Crews ST: The spineless-aristapedia and tango bHLH-PAS proteins interact to control antennal and tarsal development in Drosophila. Development 1999, 126:3937-3945.
  • [73]Huang X, Powell-Coffman JA, Jin Y: The AHR-1 aryl hydrocarbon receptor and its co-factor the AHA-1 aryl hydrocarbon receptor nuclear translocator specify GABAergic neuron cell fate in C. elegans. Dev 2004, 131:819-828.
  • [74]Hahn ME: Aryl hydrocarbon receptors: diversity and evolution. Chem Biol Interact 2002, 141:131-160.
  • [75]Chevallier A, Mialot A, Petit JM, Fernandez-Salguero P, Barouki R, Coumoul X, Beraneck M: Oculomotor deficits in aryl hydrocarbon receptor null mouse. PLoS One 2013, 8:e53520.
  • [76]Lahvis GP, Lindell SL, Thomas RS, McCuskey RS, Murphy C, Glover E, Bentz M, Southard J, Bradfield CA: Portosystemic shunting and persistent fetal vascular structures in aryl hydrocarbon receptor-deficient mice. Proc Natl Acad Sci U S A 2000, 97:10442-10447.
  • [77]Meulemans D, Bronner-Fraser M: The amphioxus SoxB family: implications for the evolution of vertebrate placodes. Int J Biol Sci 2007, 3:356-364.
  • [78]Holland LZ: Non-neural ectoderm is really neural: evolution of developmental patterning mechanisms in the non-neural ectoderm of chordates and the problem of sensory cell homologies. J Exp Zool B Mol Dev Evol 2005, 304:304-323.
  • [79]Nambu JR, Franks RG, Hu S, Crews ST: The single-minded gene of Drosophila is required for the expression of genes important for the development of CNS midline cells. Cell 1990, 63:63-75.
  • [80]Ema M, Morita M, Ikawa S, Tanaka M, Matsuda Y, Gotoh O, Saijoh Y, Fujii H, Hamada H, Kikuchi Y, Fujii-Kuriyama Y: Two new members of the murine Sim gene family are transcriptional repressors and show different expression patterns during mouse embryogenesis. Mol Cell Biol 1996, 16:5865-5875.
  • [81]Fan CM, Kuwana E, Bulfone A, Fletcher CF, Copeland NG, Jenkins NA, Crews S, Martinez S, Puelles L, Rubenstein JL, Tessier-Lavigne M: Expression patterns of two murine homologs of Drosophila single-minded suggest possible roles in embryonic patterning and in the pathogenesis of Down syndrome. Mol Cell Neurosci 1996, 7:1-16.
  • [82]Michaud JL, Rosenquist T, May NR, Fan CM: Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1. Genes Dev 1998, 12:3264-3275.
  • [83]Shamblott MJ, Bugg EM, Lawler AM, Gearhart JD: Craniofacial abnormalities resulting from targeted disruption of the murine Sim2 gene. Dev Dyn 2002, 224:373-380.
  • [84]Michaud JL, DeRossi C, May NR, Holdener BC, Fan C-M: ARNT2 acts as the dimerization partner of SIM1 for the development of the hypothalamus. Mech Dev 2000, 90:253-261.
  • [85]Ooe N, Saito K, Kaneko H: Characterization of functional heterodimer partners in brain for a bHLH-PAS factor NXF. Biochim Biophys Acta 2009, 1789:192-197.
  • [86]Dunwoodie SL: The role of hypoxia in development of the Mammalian embryo. Dev Cell 2009, 17:755-773.
  • [87]Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL: Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 1998, 12:149-162.
  • [88]Bae K, Lee C, Sidote D, Chuang KY, Edery I: Circadian regulation of a Drosophila homolog of the mammalian Clock gene: PER and TIM function as positive regulators. Mol Cell Biol 1998, 18:6142-6151.
  • [89]Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC: RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 1997, 90:1003-1011.
  • [90]Kang TH, Reardon JT, Kemp M, Sancar A: Circadian oscillation of nucleotide excision repair in mammalian brain. Proc Natl Acad Sci U S A 2009, 106:2864-2867.
  • [91]Girotti M, Weinberg MS, Spencer RL: Diurnal expression of functional and clock-related genes throughout the rat HPA axis: system-wide shifts in response to a restricted feeding schedule. Am J Physiol Endocrinol Metab 2009, 296:E888-897.
  • [92]Yu JK, Mazet F, Chen YT, Huang SW, Jung KC, Shimeld SM: The Fox genes of Branchiostoma floridae. Dev Genes Evol 2008, 218:629-638.
  • [93]Bertrand S, Escriva H: Evolutionary crossroads in developmental biology: amphioxus. Development 2011, 138:4819-4830.
  • [94]Louis A, Roest Crollius H, Robinson-Rechavi M: How much does the amphioxus genome represent the ancestor of chordates? Brief Funct Genomics 2012, 11:89-95.
  • [95]Paps J, Holland PW, Shimeld SM: A genome-wide view of transcription factor gene diversity in chordate evolution: less gene loss in amphioxus? Brief Funct Genomics 2012, 11:177-186.
  文献评价指标  
  下载次数:54次 浏览次数:6次