期刊论文详细信息
EvoDevo
What determines a leaf's shape?
Ashwani Pareek1  Jeremy Dkhar1 
[1] Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
关键词: Morphological novelty;    Nepenthes;    Environmental factors;    Polarity specification;    Auxin;    Leaf shape;   
Others  :  1093139
DOI  :  10.1186/2041-9139-5-47
 received in 2014-09-18, accepted in 2014-12-08,  发布年份 2014
PDF
【 摘 要 】

The independent origin and evolution of leaves as small, simple microphylls or larger, more complex megaphylls in plants has shaped and influenced the natural composition of the environment. Significant contributions have come from megaphyllous leaves, characterized usually as flat, thin lamina entrenched with photosynthetic organelles and stomata, which serve as the basis of primary productivity. During the course of evolution, the megaphylls have attained complexity not only in size or venation patterns but also in shape. This has fascinated scientists worldwide, and research has progressed tremendously in understanding the concept of leaf shape determination. Here, we review these studies and discuss the various factors that contributed towards shaping the leaf; initiated as a small bulge on the periphery of the shoot apical meristem (SAM) followed by asymmetric outgrowth, expansion and maturation until final shape is achieved. We found that the underlying factors governing these processes are inherently genetic: PIN1 and KNOX1 are indicators of leaf initiation, HD-ZIPIII, KANADI, and YABBY specify leaf outgrowth while ANGUSTIFOLIA3 and GROWTH-REGULATING FACTOR5 control leaf expansion and maturation; besides, recent research has identified new players such as APUM23, known to specify leaf polarity. In addition to genetic control, environmental factors also play an important role during the final adjustment of leaf shape. This immense amount of information available will serve as the basis for studying and understanding innovative leaf morphologies viz. the pitchers of the carnivorous plant Nepenthes which have evolved to provide additional support to the plant survival in its nutrient-deficient habitat. In hindsight, formation of the pitcher tube in Nepenthes might involve the recruitment of similar genetic mechanisms that occur during sympetaly in Petunia.

【 授权许可】

   
2014 Dkhar and Pareek; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150130160651512.pdf 1613KB PDF download
Figure 4. 77KB Image download
Figure 3. 98KB Image download
Figure 2. 233KB Image download
Figure 1. 222KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Nicotra AB, Leigh A, Boyce K, Jones CS, Niklas KJ, Royer DL, Tsukaya H: The evolution and functional significance of leaf shape in the angiosperms. Funct Plant Biol 2011, 38:535-552.
  • [2]McDonald PG, Fonseca CR, Overton JM, Westoby M: Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Funct Ecol 2003, 17:50-57.
  • [3]Nicotra AB: Leaf size and shape. Prometheus Wiki 2011. [http://prometheuswiki.publish.csiro.au/tiki-index.php?page=Leaf+size+and+shape webcite]
  • [4]Scoffoni C, Rawls M, McKown A, Cochard H, Sack L: Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiol 2011, 156:832-843.
  • [5]Tsukaya H: Leaf shape: genetic control and environmental factors. Int J Dev Biol 2005, 49:547-555.
  • [6]Brown VK, Lawton JH: Herbivory and the evolution of leaf size and shape. Philos Trans R Soc Lond B 1991, 333:265-272.
  • [7]Kaplan DR, Groff PA: Developmental themes in vascular plants: functional and evolutionary significance. In Experimental and Molecular Approaches to Plant Biosystematics. Edited by Hoch PC, Stephenson AJ. St. Louis, MO: Missouri Botanical Garden; 1995:111-145.
  • [8]Gifford EM, Foster AS: Morphology and Evolution of Vascular Plants. 3rd edition. New York: WH Freeman; 1989.
  • [9]Stewart WN, Rothwell GW: Paleobotany and the Evolution of Plants. 2nd edition. Cambridge: Cambridge University Press; 1993.
  • [10]Kaplan DR: The science of plant morphology: definition, history and role in modern biology. Am J Bot 2001, 88:1711-1741.
  • [11]Tomescu AMF: Megaphylls, microphylls and the evolution of leaf development. Trends Plant Sci 2009, 14:5-12.
  • [12]Kenrick P, Crane PR: The origin and early evolution of plants on land. Nature 1997, 389:33-39.
  • [13]Gensel PG, Andrews HN: Plant Life in the Devonian. New York: Praeger; 1984.
  • [14]Beerling DJ, Osborne CP, Chaloner WG: Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature 2001, 410:352-354.
  • [15]Bower FO: Primitive Land Plants also known as the Archegoniatae. London: Macmillan; 1935.
  • [16]Hao S, Beck CB, Deming W: Structure of the earliest leaves: adaptations to high concentrations of atmospheric CO2. Int J Plant Sci 2003, 164:71-75.
  • [17]Zimmermann W: Main results of the “telome theory”. Palaeobotanist 1952, 1:456-470.
  • [18]Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD: Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 2001, 409:618-622.
  • [19]Goliber T, Kessler S, Chen JJ, Bharathan G, Sinha N: Genetic, molecular, and morphological analysis of compound leaf development. Curr Top Dev Biol 1999, 43:259-290.
  • [20]Harrison CJ, Corley SB, Moylan EC, Alexander DL, Scotland RW, Langdale JA: Independent recruitment of a conserved developmental mechanism during leaf evolution. Nature 2005, 434:509-514.
  • [21]Pires ND, Yi K, Breuninger H, Catarino B, Menand B, Dolan L: Recruitment and remodeling of an ancient gene regulatory network during land plant evolution. Proc Natl Acad Sci U S A 2013, 110:9571-9576.
  • [22]Blein T, Pulido A, Vialette-Guiraud A, Nikovics K, Morin H, Hay A, Johansen IE, Tsiantis M, Laufs P: A conserved molecular framework for compound leaf development. Science 2008, 322:1835-1839.
  • [23]Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y: Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 1991, 3:677-684.
  • [24]Galweiler L, Guan C, Muller A, Wisman E, Mendgen K, Yephremov A, Palme K: Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 1998, 282:2226-2230.
  • [25]Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C: Regulation of phyllotaxis by polar auxin transport. Nature 2003, 426:255-260.
  • [26]Long JA, Moan EI, Medford JI, Barton MK: A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 1996, 379:66-69.
  • [27]Kerstetter RA, Laudencia-Chingcuanco D, Smith LG, Hake S: Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development 1997, 124:3045-3054.
  • [28]Laux T, Mayer KFX, Berger J, Jürgens G: The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 1996, 122:87-96.
  • [29]Clark SE, Running MP, Meyerowitz EM: CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 1993, 119:397-418.
  • [30]Clark SE, Running MP, Meyerowitz EM: CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 1995, 121:2057-2067.
  • [31]Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA: Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 2000, 408:967-971.
  • [32]Tsiantis M, Schneeberger R, Golz JF, Freeling M, Langdale JA: The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science 1999, 284:154-156.
  • [33]Timmermans MC, Hudson A, Becraft PW, Nelson T: ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science 1999, 284:151-153.
  • [34]Waites R, Selvadurai HR, Oliver IR, Hudson A: The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 1998, 93:779-789.
  • [35]Ramirez J, Bolduc N, Lisch D, Hake S: Distal expression of knotted1 in maize leaves leads to reestablishment of proximal/distal patterning and leaf dissection. Plant Physiol 2009, 151:1878-1888.
  • [36]Moon J, Candela H, Hake S: The Liguleless narrow mutation affects proximal-distal signalling and leaf growth. Development 2013, 140:405-412.
  • [37]Waites R, Hudson A: phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 1995, 121:2143-2154.
  • [38]Xu L, Xu Y, Dong A, Sun Y, Pi L, Huang H: Novel as1 and as2 defects in leaf adaxial–abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development 2003, 130:4097-4107.
  • [39]McConnell R, Emery JF, Eshed Y, Bao N, Bowman J, Barton MK: Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 2001, 411:709-713.
  • [40]Emery JF, Floyd SK, Alvarez J, Eshed Y, Nawker NP, Izhaki A, Baum SF, Bowman JL: Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 2003, 13:1768-1774.
  • [41]Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS: KANADI regulates organ polarity in Arabidopsis. Nature 2001, 411:706-709.
  • [42]Eshed Y, Baum SF, Perea JV, Bowman JL: Establishment of polarity in lateral organs of plants. Curr Biol 2001, 11:1251-1260.
  • [43]Huang T, Kerstetter R, Irish VF: APUM23, a PUF family protein, functions in leaf development and organ polarity in Arabidodpsis. J Exp Bot 2014, 65:1181-1191.
  • [44]Pekker I, Alvarez JP, Eshed Y: Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 2005, 17:2899-2910.
  • [45]Zhou G-K, Kubo M, Zhong R, Demura T, Ye Z-H: Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiol 2007, 48:391-404.
  • [46]Kim J, Jung J-H, Reyes JL, Kim Y-S, Kim S-Y, Chung K-S, Kim JA, Lee M, Lee Y, Kim VN, Chua N-H, Park C-M: microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 2005, 42:84-94.
  • [47]Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS: SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 2004, 18:2368-2379.
  • [48]Xie Z, Allen E, Wilken A, Carrington JC: DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2005, 102:12984-12989.
  • [49]Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC: Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 2006, 16:939-944.
  • [50]Kumaran MK, Bowman JL, Sundaresan V: YABBY polarity genes mediate the repression of KNOX homeobox genes in Arabidopsis. Plant Cell 2002, 14:2761-2770.
  • [51]Sarojam R, Sappl PG, Goldshmidt A, Efroni I, Floyd SK, Eshed Y, Bowman JL: Differentiating Arabidopsis shoots from leaves by combined YABBY activities. Plant Cell 2010, 22:2113-2130.
  • [52]Scanlon MJ, Schneeberger RG, Freeling M: The maize mutant narrow sheath fails to establish leaf margin identity in a meristematic domain. Development 1996, 122:1683-1691.
  • [53]Nardmann J, Ji J, Werr W, Scanlon MJ: The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristem. Development 2004, 131:2827-2839.
  • [54]Matsumoto N, Okada K: A homeobox gene, PRESSED FLOWER, regulates lateral axis-dependent development of Arbidopsis flowers. Genes Dev 2001, 15:3355-3364.
  • [55]Vandenbussche M, Horstman A, Zethof J, Koes R, Rijpkema AS, Gerats T: Differential recruitment of WOX transcription factors for lateral development and organ fusion in Petunia and Arabidopsis. Plant Cell 2009, 21:2269-2283.
  • [56]Cheng Y, Dai X, Zhao Y: Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 2006, 20:1790-1799.
  • [57]Cheng Y, Dai X, Zhao Y: Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 2007, 19:2430-2439.
  • [58]Kim JH, Kende H: A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci U S A 2004, 101:13374-13379.
  • [59]Horiguchi G, Kim G-T, Tsukaya H: The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J 2005, 43:68-78.
  • [60]Nath U, Crawford BCW, Carpenter R, Coen E: Genetic control of surface curvature. Science 2003, 299:1404-1407.
  • [61]Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P: The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 2006, 18:2929-2945.
  • [62]Hay A, Barkoulas M, Tsiantis M: ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis. Development 2006, 133:3955-3961.
  • [63]Engelhorn J, Reimer JJ, Leuz I, Göbel U, Huettel B, Farrona S, Turck F: DEVELOPMENT-RELATED PcG TARGET IN THE APEX 4 controls leaf margin architecture in Arabidopsis thaliana. Development 2012, 139:2566-2575.
  • [64]Poethig RS, Sussex IM: The cellular parameters of leaf development in tobacco; A clonal analysis. Planta 1985, 165:170-184.
  • [65]Dolan L, Poethig RS: Clonal analysis of leaf development in cotton. Am J Bot 1998, 85:315-321.
  • [66]Moon J, Hake S: How a leaf gets its shape. Curr Opin Plant Biol 2011, 14:24-30.
  • [67]Fambrini M, Pugliesi C: Usual and unusual development of the dicot leaf: involvement of transcription factors and hormones. Plant Cell Rep 2013, 32:899-922.
  • [68]Floyd SK, Bowman JL: Distinct developmental mechanisms reflect the independent origins of leaves in vascular plants. Curr Biol 2006, 16:1911-1917.
  • [69]Harrison CJ, Rezvani M, Langdale JA: Growth from two transient apical initials in the meristem of Selaginella kraussiana. Development 2007, 134:881-889.
  • [70]Jackson D, Veit B, Hake S: Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 1994, 120:405-413.
  • [71]Smith LG, Jackson D, Hake S: Expression of knotted1 marks shoot meristem formation during maize embryogenesis. Dev Genet 1995, 16:344-348.
  • [72]Vernoux T, Kronenberger J, Grandjean O, Laufs P, Traas J: PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem. Development 2000, 127:5157-5165.
  • [73]Reinhardt D, Mandel T, Kuhlemeier C: Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 2000, 12:507-518.
  • [74]Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J: Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 2003, 115:591-602.
  • [75]Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM: Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 2005, 15:1899-1911.
  • [76]Scarpella E, Marcos D, Friml J, Berleth T: Control of leaf vascular patterning by polar auxin transport. Genes Dev 2006, 20:1015-1027.
  • [77]Bayer EM, Smith RS, Mandel T, Nakayama N, Sauer M, Prusinkiewicz P, Kuhlemeier C: Integration of transport-based models for phyllotaxis and midvein formation. Genes Dev 2009, 23:373-384.
  • [78]Forestan C, Meda S, Varotto S: ZmPIN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development. Plant Physiol 2010, 152:1373-1390.
  • [79]Barkoulas M, Hay A, Kougioumoutzi E, Tsiantis M: A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nat Genet 2008, 40:1136-1141.
  • [80]Hamant O, Heisler MG, Jönsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, Couder Y, Traas J: Developmental patterning by mechanical signals in Arabidopsis. Science 2008, 322:1650-1655.
  • [81]Guo X, Lu W, Ma Y, Qin Q, Hou S: The BIG gene is required for auxin-mediated organ growth in Arabidopsis. Planta 2013, 237:1135-1147.
  • [82]Guenot B, Bayer E, Kierzkowski D, Smith RS, Mandel T, Žádníková P, Benková E, Kuhlemeier C: PIN1-independent leaf initiation in Arabidopsis. Plant Physiol 2012, 159:1501-1510.
  • [83]Sanders HL, Langdale JA: Conserved transport mechanisms but distinct auxin responses govern shoot patterning in Selaginella kraussiana. New Phytol 2013, 198:419-428.
  • [84]Nishii K, Möller M, Kidner C, Spada A, Mantegazza R, Wang CN, Nagata T: A complex case of simple leaves: indeterminate leaves co-express ARP and KNOX1 genes. Dev Genes Evol 2010, 220:25-40.
  • [85]Koltai H, Bird DM: Epistatic repression of PHANTASTICA and class 1 KNOTTED genes is uncoupled in tomato. Plant J 2000, 22:455-459.
  • [86]Veit B: Hormone mediated regulation of the shoot apical meristem. Plant Mol Biol 2009, 69:397-408.
  • [87]Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M: KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 2005, 15:1560-1565.
  • [88]Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N: Arabidopsis KNOX1 proteins activate cytokinin biosynthesis. Curr Biol 2005, 15:1566-1571.
  • [89]Hay A, Kaur H, Phillips A, Hedden P, Hake S, Tsiantis M: The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr Biol 2002, 12:1557-1565.
  • [90]Bolduc N, Hake S: The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. Plant Cell 2009, 21:1647-1658.
  • [91]Leibfried A, To JPC, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU: WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 2005, 438:1172-1175.
  • [92]Scanlon MJ: The polar auxin transport inhibitor N-1-naphthylphthalamic acid disrupts leaf initiation, KNOX protein regulation, and formation of leaf margins in maize. Plant Physiol 2003, 133:597-605.
  • [93]Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, Lohmann JU: Hormonal control of the shoot stem cell niche. Nature 2010, 465:1089-1092.
  • [94]Su Y-H, Liu Y-B, Zhang X-S: Auxin-cytokinin interaction regulates meristem development. Mol Plant 2011, 4:616-625.
  • [95]Phelps-Durr TL, Thomas J, Vahab P, Timmermans MCP: Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain Knox gene silencing and determinacy during organogenesis. Plant Cell 2005, 17:2886-2898.
  • [96]Harrison J, Möller M, Langdale J, Cronk Q, Hudson A: Role of KNOX genes in the evolution of morphological novelty in Streptocarpus. Plant Cell 2005, 17:430-443.
  • [97]Hay A, Tsiantis M: The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nat Genet 2006, 38:942-947.
  • [98]Shani E, Burko Y, Ben-Yaakov L, Berger Y, Amsellem Z, Goldshmidt A, Sharon E, Ori N: Stage-specific regulation of Solanum lycopersicum leaf maturation by class 1 KNOTTED1-LIKE HOMEOBOX proteins. Plant Cell 2009, 21:3078-3092.
  • [99]Lodha M, Marco CF, Timmermans MCP: The ASYMMETRIC LEAVES complex maintains repression of KNOX homeobox genes via direct recruitment of Polycomb-repressive complex2. Genes Dev 2013, 27:596-601.
  • [100]Iwakawa H, Ueno Y, Semiarti E, Onouchi H, Kojima S, Tsukaya H, Hasebe M, Soma T, Ikezaki M, Machida C, Machida Y: The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol 2002, 43:467-478.
  • [101]Hake S, Smith HMS, Holtan H, Magnani E, Mele G, Ramirez J: The role of KNOX genes in plant development. Annu Rev Cell Dev Biol 2004, 20:125-151.
  • [102]Martinez CC, Sinha NR: Genetic control of leaf shape. eLS 2013. doi:10.1002/9780470015902.a0020101.pub2
  • [103]Eshed Y, Izhaki A, Baum SF, Floyd SK, Bowman JL: Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development 2004, 131:2997-3006.
  • [104]Sussex IM: Experiments on the cause of dorsiventrality in leaves. Nature 1951, 167:651-652.
  • [105]Sussex IM: Experiments on the cause of dorsiventrality in leaves. Nature 1954, 174:351-352.
  • [106]Reinhardt D, Frenz M, Mandel T, Kuhlemeier C: Microsurgical and laser ablation analysis of leaf positioning and dorsoventral patterning in tomato. Development 2005, 132:15-26.
  • [107]Kim M, McCormick S, Timmermans M, Sinha N: The expression domain of PHANTASTICA determines leaflet placement in compound leaves. Nature 2003, 424:438-443.
  • [108]Evans MMS: The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo Sac and leaf development. Plant Cell 2007, 19:46-62.
  • [109]Ostuga D, DeGuzman B, Prigge MJ, Drews JN, Clark SE: REVOLUTA regulates meristem initiation at lateral positions. Plant J 2001, 25:223-236.
  • [110]Itoh J-I, Hibara K-I, Sato Y, Nagato Y: Developmental role and auxin responsiveness of class III homeodomain leucine zipper gene family members in rice. Plant Physiol 2008, 147:1960-1975.
  • [111]Juarez MT, Twigg RW, Timmermans MC: Specification of adaxial cell fate during maize leaf development. Development 2004, 131:4533-4544.
  • [112]Yamaguchi T, Nukazuka A, Tsukaya H: Leaf adaxial–abaxial polarity specification and lamina outgrowth: evolution and development. Plant Cell Physiol 2012, 53:1180-1194.
  • [113]Huang T, Harrar V, Lin C, Reinhart B, Newell NR, Talavera-Rauh F, Hokin SA, Barton MK, Kerstetter RA: Arabidopsis KANADI1 acts as a transcriptional repressor by interacting with a specific cis-element and regulates auxin biosynthesis, transport, and signaling in opposition to HD-ZIPIII factors. Plant Cell 2014, 26:246-262.
  • [114]Kelley DR, Arreola A, Gallagher TL, Gasser CS: ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in Arabidopsis. Development 2012, 139:1105-1109.
  • [115]Allen E, Xie Z, Gustafson AM, Carrington JC: MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 2005, 121:207-221.
  • [116]Hagemann W, Gleissberg S: Organogenetic capacity of leaves: the significance of marginal blastozones in angiosperms. Plant Syst Evol 1996, 199:121-152.
  • [117]Floyd SK, Bowman JL: Gene expression patterns in seed plant shoot meristems and leaves: homoplasy or homology? J Plant Res 2010, 123:43-55.
  • [118]Siegfried KR, Eshed Y, Baum SF, Ostuga D, Drews GN, Bowman JL: Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 1999, 126:4117-4128.
  • [119]Bowman JL: The YABBY gene family and abaxial cell fate. Curr Opin Plant Biol 2000, 3:17-22.
  • [120]Li H, Xu L, Wang H, Yuan Z, Cao X, Yang Z, Zhang D, Xu Y, Huang H: The putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and microRNA165/166 in Arabidopsis leaf development. Plant Cell 2005, 17:2157-2171.
  • [121]Bonaccorso O, Lee JE, Puah L, Scutt CP, Golz JF: FILAMENTOUS FLOWER controls lateral organ development by acting as both an activator and a repressor. BMC Plant Biol 2012, 12:176. BioMed Central Full Text
  • [122]Nardmann J, Werr W: Symplesiomorphies in the WUSCHEL clade suggest that the last common ancestor of seed plants contained at least four independent stem cell niches. New Phytol 2013, 199:1081-1092.
  • [123]Nakata M, Matsumoto N, Tsugeki R, Rikirsch E, Laux T, Okada K: Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. Plant Cell 2012, 24:519-535.
  • [124]Aloni R, Schwalm K, Langhans M, Ullrich CI: Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 2003, 216:841-853.
  • [125]Koenig D, Bayer E, Kang J, Kuhlemeier C, Sinha N: Auxin patterns Solanum lycopersicum leaf morphogenesis. Development 2009, 136:2997-3006.
  • [126]Izhaki A, Bowman JL: KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell 2007, 19:495-508.
  • [127]Wang W, Xu B, Wang H, Li J, Hung H, Xu L: YUCCA genes are expressed in response to leaf adaxial–abaxial juxtaposition and are required for leaf margin development. Plant Physiol 2001, 157:1805-1819.
  • [128]Fu Y, Xu L, Xu B, Yang L, Ling Q, Wang H, Huang H: Genetic interactions between leaf polarity-controlling genes and ASYMMETRIC LEAVES1 and 2 in Arabidopsis leaf patterning. Plant Cell Physiol 2007, 48:724-735.
  • [129]Donnelly PM, Bonetta D, Tsukaya H, Denglera RE, Denglera NG: Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 1999, 215:407-419.
  • [130]Rodriguez RE, Debernardi JM, Palatnik JF: Morphogenesis of simple leaves: regulation of leaf size and shape. WIREs Dev Biol 2014, 3:41-57.
  • [131]Barow M, Meister A: Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell Environ 2003, 26:571-584.
  • [132]Beemster GTS, Veylder LD, Vercruysse S, West G, Rombaut D, Hummelen PV, Galichet A, Gruissem W, Inzé D, Vuylsteke M: Genome-wide analysis of gene expression profiles associated with cell cycle transitions in growing organs of Arabidopsis. Plant Physiol 2005, 138:734-743.
  • [133]Kazama T, Ichihashi Y, Murata S, Tsukaya H: The mechanism of cell cycle arrest front progression explained by a KLUH/CYP78A5-dependent mobile growth factor in developing leaves of Arabidopsis thaliana. Plant Cell Physiol 2010, 51:1046-1054.
  • [134]Andriankaja M, Dhondt S, De Bodt S, Vanhaeren H, Coppens F, De Milde L, Mühlenbock P, Skirycz A, Gonzalez N, Beemster GTS, Inzé D: Exit from proliferation during leaf development in Arabidopsis thaliana: a not-so-gradual process. Dev Cell 2012, 22:64-78.
  • [135]Horiguchi G, Nakayama H, Ishikawa N, Kubo M, Demura T, Fukuda H, Tsukaya H: ANGUSTIFOLIA3 plays roles in adaxial/abaxial patterning and growth in leaf morphogenesis. Plant Cell Physiol 2011, 52:112-124.
  • [136]Vercruyssen L, Verkest A, Gonzalez N, Heyndrickx KS, Eeckhout D, Han S-K, Jégu T, Archacki R, Leene JV, Andriankaja M, Bodt SD, Abeel T, Coppensa F, Dhondt S, Milde LD, Vermeersch M, Maleux K, Gevaert K, Jerzmanowski A, Benhamed M, Wagner D, Vandepoele K, Jaeger GD, Inzé D: ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development. Plant Cell 2014, 26:210-229.
  • [137]Cubas P, Lauter N, Doebley J, Coen E: The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 1999, 18:215-222.
  • [138]Sarvepalli K, Nath U: Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. Plant J 2011, 67:595-607.
  • [139]Kuchen EE, Fox S, de Reuille PB, Kennaway R, Bensmihen S, Avondo J, Calder GM, Southam P, Robinson S, Bangham A, Coen E: Generation of leaf shape through early patterns of growth and tissue polarity. Science 2012, 335:1092-1096.
  • [140]Kawamura E, Horiguchi G, Tsukaya H: Mechanisms of leaf tooth formation in Arabidopsis. Plant J 2010, 62:429-441.
  • [141]Bilsborough GD, Runions A, Barkoulas M, Jenkins HW, Hasson A, Galinha C, Laufs P, Hay A, Prusinkiewicz P, Tsiantis M: Model for the regulation of Arabidopsis thaliana leaf margin development. Proc Natl Acad Sci U S A 2011, 108:3424-3429.
  • [142]Hasson A, Plessis A, Blein T, Adroher B, Grigg S, Tsiantis M, Boudaoud A, Damerval C, Laufs P: Evolution and diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development. Plant Cell 2011, 23:54-68.
  • [143]Chuck G, Lincoln C, Hake S: KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell 1996, 8:1277-1289.
  • [144]Chen J, Yu J, Ge L, Wang H, Berbel A, Liu Y, Chen Y, Li G, Tadege M, Wen J, Cosson V, Mysore KS, Ratet P, Madueño F, Bai G, Chen R: Control of dissected leaf morphology by a Cys(2)His(2) zinc finger transcription factor in the model legume Medicago truncatula. Proc Natl Acad Sci U S A 2010, 107:10754-10759.
  • [145]Peng J, Chen R: Auxin efflux transporter MtPIN10 regulates compound leaf and flower development in Medicago truncata. Plant Signal Behav 2011, 6:1537-1544.
  • [146]Ge L, Peng J, Berbel A, Madueño F, Chen R: Regulation of compound leaf development by PHANTASTICA in Medicago truncata. Plant Physiol 2014, 164:216-228.
  • [147]Walter A, Schurr U: Dynamics of leaf and root growth: endogenous control versus environmental impact. Ann Bot 2005, 95:891-900.
  • [148]Royer DL, Meyerson LA, Robertson KM, Adams JM: Phenotypic plasticity of leaf shape along a temperature gradient in Acer rubrum. PLoS One 2009, 4:e7653.
  • [149]Peppe DJ, Royer DL, Cariglino B, Olive SY, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams JM, Correa E, Currano ED, Erickson JM, Hinojosa LF, Hoganson JW, Iglesias A, Jaramillo CA, Johnson KR, Jordan GJ, Kraft NJB, Lovelock EC, Lusk CH, Niinemets Ü, Peñuelas J, Rapson G, Wing SL, Wright IJ: Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytol 2011, 190:724-739.
  • [150]Thomas SC, Bazzaz FA: Elevated CO2 and leaf shape: are dandelions getting toothier? Am J Bot 1996, 83:106-111.
  • [151]Yoshida S, Mandel T, Kuhlemeier C: Stem cell activation by light guides plant organogenesis. Genes Dev 2011, 25:1439-1450.
  • [152]Low VHK: Effects of light and darkness on the growth of peas. Aust J Biol Sci 1970, 24:187-195.
  • [153]Muir CD: How did the Swiss cheese plant get its holes? Am Nat 2013, 181:273-281.
  • [154]Rivero-Lynch AP, Brown VK, Lawton JH: The impact of leaf shape on the feeding preference of insect herbivores: experimental and field studies with Capsella and Phyllotreta. Philos Trans R Soc Lond B 1996, 351:1671-1677.
  • [155]Campitelli BE, Simonsen AK, Wolf AR, Manson JS, Stinchcombe JR: Leaf shape variation and herbivore consumption and performance: a case study with Ipomoea hederacea and three generalists. Arthropod Plant Interact 2008, 2:9-19.
  • [156]Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA: Sugar demand, not auxin, is the initial regulator of apical dominance. Proc Natl Acad Sci U S A 2014, 111:6092-6097.
  • [157]Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR, Reidel EJ, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell TP: The developmental dynamics of the maize leaf transcriptome. Nat Genet 2010, 42:1060-1067.
  • [158]Juniper BE, Robins RJ, Joel DM: The Carnivorous Plants. London: Academic; 1989.
  • [159]Albert VA, Williams SE, Chase MW: Carnivorous plants: phylogeny and structural evolution. Science 1992, 257:1491-1495.
  • [160]Pavlovič A, Masarovičová E, Hudák J: Carnivorous syndrome in Asian pitcher plants of the Genus Nepenthes. Ann Bot 2007, 100:527-536.
  • [161]Leushkin EV, Sutormin RA, Nabieva ER, Penin AA, Kondrashov AS, Logacheva MD: The miniature genome of a carnivorous plant Genlisea aurea contains a low number of genes and short non-coding sequences. BMC Genomics 2013, 14:476. BioMed Central Full Text
  • [162]Ibarra-Laclette E, Lyons E, Hernández-Guzmán G, Pérez-Torres CA, Carretero-Paulet L, Chang T-H, Lan T, Welch AJ, Juárez MJA, Simpson J, Fernández-Cortés A, Arteaga-Vázquez M, Góngora-Castillo E, Acevedo-Hernández G, Schuster SC, Himmelbauer H, Minoche AE, Xu S, Lynch M, Oropeza-Aburto A, Cervantes-Pérez SA, Ortega-Estrada MJ, Cervantes-Luevano JI, Michael TP, Mockler T, Bryant D, Herrera-Estrella A, Albert VA, Herrera-Estrella L: Architecture and evolution of a minute plant genome. Nature 2013, 498:94-98.
  文献评价指标  
  下载次数:0次 浏览次数:2次