期刊论文详细信息
Carbon Balance and Management
Alaska ecosystem carbon fluxes estimated from MODIS satellite data inputs from 2000 to 2010
Vanessa Genovese2  Steven Klooster2  Christopher Potter1 
[1] NASA Ames Research Center, Mail Stop 232-21, Moffett Field, CA 94035, USA;California State University Monterey Bay, Seaside, CA, USA
关键词: Alaska;    Ecosystems;    MODIS EVI;    Net carbon flux;   
Others  :  790510
DOI  :  10.1186/1750-0680-8-12
 received in 2013-08-06, accepted in 2013-11-19,  发布年份 2013
PDF
【 摘 要 】

Background

Trends in Alaska ecosystem carbon fluxes were predicted from inputs of monthly MODerate resolution Imaging Spectroradiometer (MODIS) vegetation index time-series combined with the NASA-CASA (Carnegie Ames Stanford Approach) carbon cycle simulation model over the past decade. CASA simulates monthly net ecosystem production (NEP) as the difference in carbon fluxes between net primary production (NPP) and soil microbial respiration (Rh).

Results

Model results showed that NEP on a unit area basis was estimated to be highest (> +10 g C m-2 yr-1) on average over the period 2000 to 2010 within the Major Land Resource Areas (MRLAs) of the Interior Brooks Range Mountains, the Arctic Foothills, and the Western Brooks Range Mountains. The lowest (as negative land C source fluxes) mean NEP fluxes were predicted for the MLRAs of the Cook Inlet Lowlands, the Ahklun Mountains, and Bristol Bay-Northern Alaska Peninsula Lowlands. High levels of interannual variation in NEP were predicted for most MLRAs of Alaska.

Conclusions

The relatively warm and wet years of 2004 and 2007 resulted in the highest positive NEP flux totals across MLRAs in the northern and western coastal locations in the state (i.e., the Brooks Range Mountains and Arctic Foothills). The relatively cold and dry years of 2001 and 2006 were predicted with the lowest (negative) NEP flux totals for these MLRAs, and likewise across the Ahklun Mountains and the Yukon-Kuskokwim Highlands.

【 授权许可】

   
2013 Potter et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705001117554.pdf 1586KB PDF download
Figure 6. 107KB Image download
Figure 5. 103KB Image download
Figure 4. 58KB Image download
Figure 3. 48KB Image download
Figure 2. 46KB Image download
Figure 1. 136KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]IPCC: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC; 2007:104.
  • [2]Callaghan TV, Björn LO, Chapin FS III, Chernov Y, Christensen TR, Huntley B, Ims R, Johansson M, Riedlinger DJ, Jonasson S, Matveyeva N, Oechel W, Panikov N, Shaver G: Arctic Tundra and Polar Desert Ecosystems. Chapter 7. In Arctic Climate Impact Assessment. Cambridge University: Arctic Council; 2005:243-352.
  • [3]Martin PD, Jenkins JL, Adams FJ, Jorgenson MT, Matz AC, Payer DC, Reynolds PE, Tidwell AC, Zelenak JR: Wildlife Response to Environmental Arctic Change: Predicting Future Habitats of Arctic Alaska. In Report of the Wildlife Response to Environmental Arctic Change (WildREACH): Predicting Future Habitats of Arctic Alaska Workshop, 17–18 November 2008. Fairbanks, Alaska: U.S: Fish and Wildlife Service; 2009:138.
  • [4]Reist JD, Wrona FJ, Prowse TD, Power M, Dempson JB, Beamish RJ, King JR, Carmichael TJ, Sawatzky CD: General effects of climate change on Arctic fishes and fish populations. Ambio 2006, 35:370-380.
  • [5]Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA: Fingerprints of global warming on wild animals and plants. Nature 2003, 421(6918):57-60.
  • [6]Thackeray SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ, Bell JR, Botham MS, Brereton TM, Bright PW, Carvalho L, Clutton-Brock T, Dawson A, Edwards M, Elliott JM, Harrington R, Johns D, Jones ID, Jones JT, Leech DI, Roy DB, Scott WA, Smith M, Smithers RJ, Winfield IJ, Wanless S: Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Chang Biol 2010. doi:10.1111/j.1365-2486.2010.02165.x
  • [7]Amiro BD, Chen JM, Liu J: Net primary productivity following forest fire for Canadian ecoregions. Can J Forest Res 2000, 30(6):939-947.
  • [8]Casady GM, Marsh SE: Broad-scale environmental conditions responsible for post-fire vegetation dynamics. Remote Sensing 2010, 2(12):2643-2664.
  • [9]Cuevas-Gonzalez M, Gerard F, Balzter H, Riano D: Analysing forest recovery after wildfire disturbance in boreal Siberia using remotely sensed vegetation indices. Glob Chang Biol 2009, 15:561-577. doi:10.1111/j.1365-2486.2008.01784.x
  • [10]Epting J, Verbyla DL: Landscape level interactions of pre-fire vegetation, burn severity, and post-fire vegetation over a 16-year period in interior Alaska. Can J Forest Res 2005, 35:1367-1377.
  • [11]Jia GJ, Epstein HE, Walker DA: Greening of arctic Alaska, 1981–2001. Geophys Res Lett 2003, 30(20):2067. doi:10.1029/2003GL018268
  • [12]Goetz SJ, Bunn AG, Fiske GJ, Houghton RA: Satellite observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc Natl Acad Sci 2005, 103(38):13521-13525.
  • [13]Goetz SJ, Fiske GJ, Bunn AG: Using satellite time-series data sets to analyze fire disturbance and forest recovery across Canada. Remote Sens Environ 2006, 101:352-365.
  • [14]Beck PSA, Goetz SJ: Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ Res Lett 2011, 6:045501.
  • [15]Walker MD, et al.: Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci 2006, 103:1342-1346.
  • [16]McMichael CE, Hope AS, Stow DA, Fleming JB: The relation between active layer depth and a spectral vegetation index in arctic tundra landscapes of the North Slope of Alaska. Int j remote sens 1997, 18(11):2371-2382.
  • [17]Kim Y, Kimball JS, Zhang K, McDonald KC: Satellite detection of increasing northern hemisphere non-frozen seasons from 1979 to 2008: implications for regional vegetation growth. Remote Sens Environ 2012, 121:472-487.
  • [18]Balshi MS, McGuire AD, Zhuang Q, Melillo J, Kicklighter DW, Kasischke E, Wirth C, Flannigan M, Harden J, Clein JS, Burnside TJ, McAllister J, Kurz WA, Apps M, Shvidenko A: The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: a process based analysis. J Geophys Res 2007., 112G02029
  • [19]Zhuang Q, Melillo JM, McGuire AD, Kicklighter DW, Prinn RG, Steudler PA, Felzer BS, Hu S: Net emissions of CH4 and CO2 in Alaska: implications for the region’s greenhouse gas budget. Ecol Appl 2007, 17:203-212.
  • [20]O’Donnell JA, Jorgenson MT, Harden JW, McGuire AD, Kanevskiy MZ, Wickland KP: The effects of permafrost thaw on soil hydrologic, thermal and carbon dynamics in an Alaskan peatland. Ecosystems 2012, 15:213-229. doi:10.1007/s10021-011-9504-0
  • [21]Potter C, Klooster S, Genovese V, Hiatt C, Boriah S, Kumar V, Mithal V, Garg A: Terrestrial ecosystem carbon fluxes predicted from MODIS satellite data and large-scale disturbance modeling. International Journal of Geosciences 2012. doi:10.4236/ijg.2012
  • [22]Friedl MA, McIver DK, Hodges JCF, Zhang XY, Muchoney D, co-authors: Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ 2002, 83:287-302.
  • [23]USDA Natural Resources Conservation Service: Land Resource Regions and Major Land Resource Areas (MRLAs) of the United States, the Caribbean, and the PacificBasin. U.S: Department of Agriculture Handbook; 2006:296.
  • [24]Heinsch FA, Zhao MS, Running SW, Kimball JS, Nemani RR: Evaluation of remote sensing based terrestrial productivity from MODIS using tower eddy flux network observations. Ieee t geosci remote 2006, 44:1908-1924.
  • [25]Ma S, Baldocchi DD, Xu LK, Hehn T: Inter-annual variability in carbon dioxide exchange of an Oak/grass savanna and open grassland in California. Agr Forest Meteorol 2007, 147:157-171.
  • [26]Potter C, Klooster S, Genovese V: Net primary production of terrestrial ecosystems from 2000 to 2009. Clim Change 2012. doi:10.1007/s10584-012-0460-2
  • [27]Tape K, Sturm M, Racine C: The evidence for shrub expansion in northern Alaska and the pan-Arctic. Glob Chang Biol 2006, 12:686-702.
  • [28]Yuan FM, Yi SH, McGuire AD, Johnson KD, Liang J, Harden JW, Kasischke ES, Kurz WA: Assessment of boreal forest historical C dynamics in the Yukon River Basin: relative roles of warming and fire regime change. Ecol Appl 2012, 22(8):2091-109.
  • [29]Tan Z, Tieszen LL, Zhu Z, Liu S, Howard SM: An estimate of carbon emissions from 2004 wildfires across Alaskan Yukon River Basin. Carbon Balance Manag 2007, 2:12. BioMed Central Full Text
  • [30]van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Kasibhatla PS, Arellano AF Jr: Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 2006, 6:3423-3441.
  • [31]Wang D, Morton D, Masek J, Wu A, Nagol J, Xiong X, Levy R, Vermote E, Wolfe R: Impact of sensor degradation on the MODIS NDVI time series. Remote Sens Environ 2012, 119:55-61.
  • [32]Potter C, Li S, Crabtree R: Changes in Alaskan tundra ecosystems estimated from MODIS greenness trends, 2000 to 2010. Journal of Geophysics & Remote Sensing 2013, 2:1. http://dx.doi.org/10.4172/2169-0049.1000107 webcite
  • [33]Whitcomb J, Moghaddam M, McDonald K, Kellndorfer J, Podest E: Mapping wetlands of Alaska from L-band SAR imagery. Can j remote sens 2009, 35:54-72.
  • [34]Potter C, Klooster S, Hiatt S, Fladeland M, Genovese V, Gross P: Methane emissions from natural wetlands in the United States: satellite-derived estimation based on ecosystem carbon cycling. Earth interact 2006, 10(22):1-12.
  • [35]Goetz SJ, Prince SD: Variability in light utilization and net primary production in boreal forest stands. Can J Forest Res 1998, 28:375-389.
  • [36]Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H: A continuous satellite-derived measure of global terrestrial primary production. BioScience 2004, 54:547-560.
  • [37]Sellers PJ, Tucker CJ, Collatz GJ, Los SO, Justice CO, Dazlich DA, Randall DA: A global 1x1 NDVI data set for climate studies. Part 2: the generation of global fields of terrestrial biophysical parameters from the NDVI. Int j remote sens 1994, 15:3519-3545.
  • [38]Huete AR, Didan K, Shimabukuro YE, Ratana P, Saleska SR, Hutyra LR, Fitzjarrald D, Yang W, Nemani RR, Myneni R: Amazon rainforests green‒up with sunlight in dry season. Geophys Res Lett 2006, 33:L 06405. doi:10.1029/2005GL025583
  • [39]Potter CS, Brooks V: Global analysis of empirical relations between annual climate and seasonality of NDVI. Int j remote sens 1998, 19:2921-2948.
  • [40]Potter CS: Terrestrial biomass and the effects of deforestation on the global carbon cycle. BioScience 1999, 49:769-778.
  • [41]Potter CS, Klooster SA, Brooks V: Interannual variability in terrestrial net primary production: exploration of trends and controls on regional to global scales. Ecosystems 1999, 2:36-48.
  • [42]Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA: Terrestrial ecosystem production: a process model based on global satellite and surface data. Glob Biogeochem Cycles 1993, 7:811-41.
  • [43]Potter C, Klooster S, Myneni R, Genovese V, Tan P, Kumar V: Continental scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982–98. Global Planet Change 2003, 39:201-213.
  • [44]Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D: The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 1996, 77:437-472.
  • [45]Kistler R, et al.: The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 2001, 82:247-68.
  • [46]Potter CS, Wang S, Nikolov NT, McGuire AD, Liu J, King AW, Kimball JS, Grant RF, Frolking SE, Clein JS, Chen JM, Amthor JS: Comparison of boreal ecosystem model sensitivity to variability in climate and forest site parameters. J Geophys Res 2001, 106:33,671-33,688.
  • [47]Potter CS: Predicting climate change effects on vegetation, soil thermal dynamics, and carbon cycling in ecosystems of interior Alaska. Ecol Model 2004, 175:1-24.
  • [48]Potter CS, Bubier J, Crill P, LaFleur P: Ecosystem modeling of methane and carbon dioxide fluxes for boreal forest sites. Can J Forest Res 2001, 31:208-223.
  • [49]LP-DACC: NASA Land Processes Distributed Active Archive Center. In MODIS/Terra Vegetation Indices Monthly L3 Global 0.05Deg CMG (MOD13C2), Version 005. Sioux Falls, South Dakota: USGS/Earth Resource s Observation and Science (EROS) Center; 2007.
  • [50]Huete A, Didan K, Miura T, Rodriquez E, Gao X, Ferreira L: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 2002, 83:195-213.
  文献评价指标  
  下载次数:4次 浏览次数:11次