Journal of Therapeutic Ultrasound | |
Application of acoustic droplet vaporization in ultrasound therapy | |
Yufeng Zhou1  | |
[1] School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore | |
关键词: Ultrasound therapy; Acoustic bioeffects; Cavitation; Bubble; Acoustic droplet vaporization; | |
Others : 1232079 DOI : 10.1186/s40349-015-0041-8 |
|
received in 2015-06-22, accepted in 2015-11-02, 发布年份 2015 | |
【 摘 要 】
Microbubbles have been used widely both in the ultrasonic diagnosis to enhance the contrast of vasculature and in ultrasound therapy to increase the bioeffects induced by bubble cavitation. However, due to their large size, the lifetime of microbubbles in the circulation system is on the order of minutes, and they cannot penetrate through the endothelial gap to enter the tumor. In an acoustic field, liquefied gas nanoparticles may be able to change the state and become the gas form in a few cycles of exposure without significant heating effects. Such a phenomenon is called as acoustic droplet vaporization (ADV). This review is intended to introduce the emerging application of ADV. The physics and the theoretical model behind it are introduced for further understanding of the mechanisms. Current manufacturing approaches are provided, and their differences are compared. Based on the characteristic of phase shift, a variety of therapeutic applications have been carried out both in vitro and in vivo. The latest progress and interesting results of vessel occlusion, thermal ablation using high-intensity focused ultrasound (HIFU), localized drug delivery to the tumor and cerebral tissue through the blood-brain barrier, localized tissue erosion by histotripsy are summarized. ADV may be able to overcome some limitations of microbubble-mediated ultrasound therapy and provide a novel drug and molecular targeting carrier. More investigation will help progress this technology forward for clinical translation.
【 授权许可】
2015 Zhou.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20151112095801798.pdf | 3274KB | download | |
Fig. 12. | 28KB | Image | download |
Fig. 11. | 27KB | Image | download |
Fig. 10. | 37KB | Image | download |
Fig. 9. | 34KB | Image | download |
Fig. 8. | 72KB | Image | download |
Fig. 7. | 17KB | Image | download |
Fig. 6. | 90KB | Image | download |
Fig. 5. | 21KB | Image | download |
Fig. 4. | 47KB | Image | download |
Fig. 3. | 82KB | Image | download |
Fig. 2. | 37KB | Image | download |
Fig. 1. | 32KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
【 参考文献 】
- [1]Stride E, Coussios C. Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy. Proc Inst Mech Eng Part H: J Eng Med. 2010; 224:171-191.
- [2]Miller MW, Miller DL, Brayman AA. A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol. 1996; 22:1131-1154.
- [3]Petit B, Bohren Y, Gaud E, Bussat P, Arditi M, Yan F, Tranquart F, Allémann E. Sonothrombolysis: the contribution of stable and inertial cavitation to clot lysis. Ultrasound Med Biol. 2015; 41:1402-1410.
- [4]Kooiman K, Vos HJ, Versluis M, de Jong N. Acoustic behavior of microbubbles and implications for drug delivery. Adv Drug Deliv Rev. 2014; 72:28-48.
- [5]Chung DJ, Cho SH, Lee JM, Hahn S-T. Effect of microbubble contrast agent during high intensity focused ultrasound ablation on rabbit liver in vivo. Eur J Radiol. 2012; 81:e519-e523.
- [6]Carlisle R, Choi J, Bazan-Peregrino M, Laga R, Subr V, Kostka L, Ulbrich K, Coussios C-C, Seymour LW. Enhanced tumor uptake and penetration of virotherapy using polymer stealthing and focused ultrasound. J Natl Cancer Inst. 2013; djt305.
- [7]Graham SM, Carlisle R, Choi JJ, Stevenson M, Shah AR, Myers RS, Fisher K, Peregrino M-B, Seymour L, Coussios CC. Inertial cavitation to non-invasively trigger and monitor intratumoral release of drug from intravenously delivered liposomes. J Control Release. 2014; 178:101-107.
- [8]Kripfgans OD, Fowlkes JB, Miller DL, Eldevik OP, Carson PL. Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med Biol. 2000; 26:1177-1189.
- [9]Zhang M, Fabiilli ML, Haworth KJ, Padilla F, Swanson SD, Kripfgans OD, Carson PL, Fowlkes JB. Acoustic droplet vaporization for enhancement of thermal ablation by high intensity focused ultrasound. Acad Radiol. 2011; 18:1123-1132.
- [10]Sheeran PS, Dayton PA. Phase-change contrast agents for imaging and therapy. Curr Pharm Des. 2012; 18:2152-2165.
- [11]Lattin JR, Pitt WG, Belnap DM, Husseini GA. Ultrasound-induced calcein release from eLiposomes. Ultrasound Med Biol. 2012; 38:2163-2173.
- [12]Crouse LJ, Cheirif J, Hanly DE, Kisslo JA, Labovitz AJ, Raichlen JS, Schutz RW, Shah PM, Smith MD. Opacification and border delineation improvement in patients with suboptimal endocardial border definition in routine echocardiography: results of the phase III Albunex multicenter trial. J Am Coll Cardiol. 1993; 22:1494-1500.
- [13]Lindner JR, Dent JM, Moos SP, Jayaweera AR, Kaul S. Enhancement of left ventricular cavity opacification by harmonic imaging after venous injection of Albunex. Am J Cardiol. 1997; 79:1657-1662.
- [14]Ives AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Deiscov Today. 2006; 11:812-818.
- [15]Kripfgans OD, Orifici CM, Carson PL, Ives K, Eldevik OP, Fowlkes JB. Acoustic droplet vaporization for temporal and spatial control of tissue occlusion: a kidney study. IEEE Trans Ultrason FerroelectrFreq Control. 2005; 52:1101-1110.
- [16]Zhang M, Fabiilli ML, Haworth KJ, Fowlkes JB, Kripfgans OD, Roberts WW, Ives KA, Carson PL. Initial investigation of acoustic droplet vaporization for occlusion in canine kidney. Ultrasound Med Biol. 2010; 36:1691-1703.
- [17]Shiraishi K, Endoh R, Furuhata H, Nishihara M, Suzuki R, Kazuo M, Oda Y, Jo J-i, Tabata Y, Yamamoto J, Yokoyama M. A facile preparation method of a PFC-containing nano-sized emulsion for theranostics solid tumors. Int J Pharm. 2011; 421:379-387.
- [18]Sheeran PS, Wong VP, Luois S, McFarland RJ, Ross WD, Feingold S, Matsunaga TO, Dayton PA. Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging. Ultrasound Med Biol. 2011; 37:1518-1530.
- [19]Zhang P, Porter T. An in vitro study of a phase-shift nanoemulsion: a potential nucleation agent for bubble-enhanced HIFU tumor ablation. Ultrasound Med Biol. 2010; 36:1856-1866.
- [20]Rapoport N. Phase-shift, stimuli-responsive perfluorocarbon nanodroplets for drug delivery to cancer. Wiley Interdisc Rev: Nanomedicine Nanobiotechnology. 2012; 4:492-510.
- [21]Rapoport N, Kennedy AM, Shea JE, Scaife CL, Nam KH. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release. 2009; 138:268-276.
- [22]Wong A, Kripfgans OD, Qamar A, Fowlkes JB, Bull JL. Bubble evolution in acoustic droplet vaporization at physiological temperature via ultra-high speed imaging. Soft Matter. 2011; 7:4009-4016.
- [23]Qamar A, Wong ZZ, Fowlkes JB, Bull JL. Dynamics of acoustic droplet vaporization in gas embolotherapy. Appl Phys Lett. 2010; 96:143702.
- [24]Shpak O, Kokhuis TJ, Luan Y, Lohse D, de Jong N, Fowlkes JB, Fabiilli ML, Versluis M. Ultrafast dynamics of the acoustic vaporization of phase-change microdroplets. J Acoust Soc Am. 2013; 134:1610-1621.
- [25]Fabiilli ML, Haworth KJ, Fakhri NH, Kripfgans OD, Carson PL, Fowlkes JB. The role of inertial cavitation in acoustic droplet vaporization. IEEE Trans Ultrason Ferroelectr Freq Control. 2009; 56:1006-1017.
- [26]Singh R, Husseini GA, Pitt WG. Phase transitions of nanoemulsions using ultrasound: experimental observations. Ultrason Sonochem. 2012; 19:1120-1125.
- [27]Chen CC, Sheeran PS, Wu S-Y, Olumolade OO, Dayton PA, Konofagou EE. Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets. J Control Release. 2013; 172:795-804.
- [28]Kripfgans OD, Fabiilli ML, Carson PL, Fowlkes JB. On the acoustic vaporization of micrometer-sized droplets. J Acoust Soc Am. 2004; 116:272-281.
- [29]Kang S-T, Yeh C-K. Intracellular acoustic droplet vaporization in a single peritoneal macrophage for drug delivery applications. Langmuir. 2011; 27:13183-13188.
- [30]Shpak O, Verweij M, Vos HJ, de Jong N, Lohse D, Versluis M. Acoustic droplet vaporization is initiated by superharmonic focusing. PNAS. 2014; 111:1697-1702.
- [31]Li DS, Kripfgans OD, Fabiilli ML, Fowlkes JB, Bull JL. Initial nucleation site formation due to acoustic droplet vaporziation. Appl Phys Lett. 2014; 104:063703.
- [32]Reznik N, Shpak O, Gelderblom EC, Williams R, de Jong N, Versluis M, Burns PN. The efficiency and stability of bubble formation by acoustic vaporization of submicron perfluorocarbon droplets. Ultrasonics. 2013; 53:1368-1376.
- [33]Pitt WG, Singh RN, Perez KX, Husseini GA, Jack DR. Phase transitions of perfluorocarbon nanoemulsion induced with ultrasound: a mathematical model. Ultrason Sonochem. 2014; 21:879-891.
- [34]Sheeran PS, Matsunaga TO, Dayton PA. Phase-transition thresholds and vaporization phenomena for ultrasound phase-change nanoemulsions assessed via high-speed optical microscopy. Phys Med Biol. 2013; 58:4513.
- [35]Giesecke T, Hynynen K. Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro. Ultrasound Med Biol. 2003; 29:1359-1365.
- [36]Lo AH, Kripfgans OD, Carson PL, Rothman ED, Fowlkes JB. Acoustic droplet vaporization threshold: effects of pulse duration and contrast agent. IEEE Trans Ultrason Ferroelectr Freq Control. 2007; 54:933-946.
- [37]Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci. 2007; 32:962-990.
- [38]Rapoport N, Gao Z, Kennedy AM. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst. 2007; 99:1095-1106.
- [39]Rapoport N, Christensen DA, Kennedy AM, Nam KH. Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers. Ultrasound Med Biol. 2010; 36:419-429.
- [40]Rapoport N, Efros AL, Christensen DA, Kennedy AM, Nam KH. Microbubble generation in phase-shift nanoemulsions used as anticancer drug carriers. Bub Sci Eng Technol. 2009; 1:31-39.
- [41]Yang SC, Lu LF, Cai Y, Zhu JB, Liang BW, Yang CZ. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release. 1999; 59:299-307.
- [42]Fang J-Y, Hung C-F, Hua S-C, Hwang T-L. Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: drug release and cytotoxicity against cancer cells. Ultrasonics. 2009; 49:39-46.
- [43]Sheeran PS, Luois S, Dayton PA, Matsunaga TO. Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound. Langmuir. 2011; 27:10412-10420.
- [44]Bardin D, Martz TD, Sheeran PS, Shih R, Dayton PA, Lee AP. High-speed, clinical-scale microfluidic generation of stable phase-change droplets for gas embolotherapy. Lab Chip. 2011; 11:3990-3998.
- [45]Boehm T, Folkman J, Browder T, O'Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature. 1997; 390:404-407.
- [46]Kripfgans OD, Fowlkes JB, Woydt M, Eldevik OP, Carson PL. In vivo droplet vaporization for occlusion therapy and phase aberration correction. Ultrason Ferroelectr Freq Control IEEE Trans. 2002; 49:726-738.
- [47]Shojaei F. Anti-angiogenesis therapy in cancer: current challenges and future perspectives. Cancer Lett. 2012; 320:130-137.
- [48]Schlappack O, Zimmermann A, Hill R. Glucose starvation and acidosis: effect on experimental metastatic potential. DNA content and MTX resistance of murine tumour cells. Br J Cancer. 1991; 64:663.
- [49]Papadopoulou MV, Ji M, Bloomer WD. NLCQ-1, a novel hypoxic cyototoxin: potentiation of melphalan, cisDDP and cyclophosphamide in vivo. Int J Radiat Oncol Biol Phys. 1998; 42:775-779.
- [50]Fabiilli ML, Lee JA, Kripfgans OD, Carson PL, Fowlkes JB. Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions. Pharm Res. 2010; 27:2753-2765.
- [51]Lyaker MR, Tulman DB, Dimitrova GT, Pin RH, Papadimos TJ. Arterial embolism. Int J Crit Illn Inj Sci. 2013; 3:77-87.
- [52]Parkins CS, Hill SA, Lonergan SJ, Horsman MR, Chadwick JA, Chaplin DJ. Ischaemia induced cell death in tumors: importance of temperature and pH. Int J Radiat Oncol* Biol* Phys. 1994; 29:499-503.
- [53]Chaplin D, Horsman M. The influence of tumour temperature on ischemia-induced cell death: potential implications for the evaluation of vascular mediated therapies. Radiother Oncol. 1994; 30:59-65.
- [54]Dayton PA, Klibanov A, Brandenburger G, Ferrara K. Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles. Ultrasound Med Biol. 1999; 25:1195-1201.
- [55]Rychak JJ, Klibanov AL, Hossack JA. Acoustic radiation force enhances targeted delivery of ultrasound contrast microbubbles: in vitro verification. IEEE Trans Ultrason Ferroelectr Freq Control. 2005; 52:421-433.
- [56]Lum AFH, Borden MA, Dayton PA, Kruse DE, Simon SI, Ferrara KW. Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J Control Release. 2006; 111:128-134.
- [57]Gao Z, Kennedy AM, Christensen DA, Rapoport N. Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics. 2008; 48:260-270.
- [58]Zhou Y. Ultrasound-mediated drug/gene delivery in solid tumor treatment. J Healthcare Eng. 2013; 4:223-254.
- [59]Riess JG. Oxygen carriers (“blood substitutes”)-raison d’etre, chemistry, and some physiology. Chem Rev. 2001; 101:2797-2919.
- [60]Couture O, Faivre M, Pannacci N, Babataheri A, Servois V, Tabeling P, Tanter M. Ultrasound internal tattooing. Medical Physics. 2011; 38:1116-1123.
- [61]Lanza GM, Wickline SA. Targeted ultrasonic contrast agents for molecular imaging and therapy. Prog Cardiovasc Dis. 2001; 44:13-31.
- [62]Lanza GM, Wickline SA. Targeted ultrasonic contrast agents for molecular imaging and therapy. Curr Probl Cardiol. 2003; 28:625-653.
- [63]Kaneda MM, Caruthers S, Lanza GM, Wickline SA. Perfluorocarbon nanoemulsions for quantitative molecular imaging and targeted therapeutics. Ann Biomed Eng. 2009; 37:1922-1933.
- [64]Rapoport N, Nam K-H, Gupta R, Gao Z, Mohan P, Payne A, Todd N, Liu X, Kim T, Shea J. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J Control Release. 2011; 153:4-15.
- [65]Hayat H, Friedbert I. Heat-induced alterations in cell membrane permeability and cell inactivation of transformed mouse fibroblasts. Int J Hyperthermia. 1986; 2:369-378.
- [66]Mesiwala AH, Farrell L, Wenzel HJ, Silbergeld DL, Crum LA, Winn HR, Mourad PD. High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo. Ultrasound Med Biol. 2002; 28:389-400.
- [67]Vykhodtseva N, McDannold N, Hynynen K. Progress and problems in the application of focused ultrasound for blood–brain barrier disruption. Ultrasonics. 2008; 48:279-296.
- [68]McDannold N, Vykhodtseva N, Hynynen K. Targeted disruption of the blood–brain barrier with focused ultrasound: association with cavitation activity. Phys Med Biol. 2006; 51:793-807.
- [69]Vlaisavljevich E, Aydin O, Durmaz YY, Lin K-W, Fowlkes JB, ElSayed M, Xu Z. Effects of ultrasound frequency on nanodroplet-mediated histotripsy. Ultrasound Med Biol. 2015; 41:2135-2147.
- [70]Lanza G, Winter P, Caruthers S, Hughes M, Hu G, Schmieder A, Wickline S. Theragnostics for tumor and plaque angiogenesis with perfluorocarbon nanoemulsions. Angiogenesis. 2010; 13:189-202.
- [71]Lanza GM, Winter PM, Neubauer AM, Caruthers SD, Hockett FD, Wickline SA. 1 H/19 F magnetic resonance molecular imaging with perfluorocarbon nanoparticles. Curr Top Dev Biol. 2005; 70:57-76.
- [72]Caruthers SD, Neubauer AM, Hockett FD, Lamerichs R, Winter PM, Scott MJ, Gaffney PJ, Wickline SA, Lanza GM. In vitro demonstration using 19F magnetic resonance to augment molecular imaging with paramagnetic perfluorocarbon nanoparticles at 1.5 tesla. Investig Radiol. 2006; 41:305-312.
- [73]Partlow KC, Chen J, Brant JA, Neubauer AM, Meyerrose TE, Creer MH, Nolta JA, Caruthers SD, Lanza GM, Wickline SA. 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J. 2007; 21:1647-1654.
- [74]Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharmaecutics. 2011; 8:2101-2141.
- [75]Lin C-Y, Pitt WG. Acoustic droplet vaporization in biology and medicine. BioMed Res Int. 2013;2013.
- [76]Shpak O, Stricker L, Versluis M, Lohse D. The role of gas in ultrasonically driven vapor bubble growth. Phys Med Biol. 2013; 58:2523.
- [77]Vlaisavljevich E, Durmaz YY, Maxwell A, ElSayed M, Xu Z. Nanodroplet-mediated histotripsy for image-guided targeted ultrasound cell ablation. Theranostics. 2013; 3:851-864.