期刊论文详细信息
Cell & Bioscience
Epithelial-Mesenchymal Transition in tumor microenvironment
Lixin Wei1  Yan Liu1  Shanshan Zhang1  Zhipeng Han1  Yingying Jing1 
[1] Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medicial University, Shanghai, China
关键词: Signaling pathway;    Metastasis;    Tumor Microenvironment;    Epithelial-Mesenchymal Transition (EMT);   
Others  :  793913
DOI  :  10.1186/2045-3701-1-29
 received in 2011-07-15, accepted in 2011-08-31,  发布年份 2011
PDF
【 摘 要 】

The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and also in the tumor invasion process. In addition, EMT also causes disruption of cell-cell adherence, loss of apico-basal polarity, matrix remodeling, increased motility and invasiveness in promoting tumor metastasis. The tumor microenvironment plays an important role in facilitating cancer metastasis and may induce the occurrence of EMT in tumor cells. A large number of inflammatory cells infiltrating the tumor site, as well as hypoxia existing in a large area of tumor, in addition many stem cells present in tumor microenvironment, such as cancer stem cells (CSCs), mesenchymal stem cells (MSCs), all of these may be the inducers of EMT in tumor cells. The signaling pathways involved in EMT are various, including TGF-β, NF-κB, Wnt, Notch, and others. In this review, we discuss the current knowledge about the role of the tumor microenvironment in EMT and the related signaling pathways as well as the interaction between them.

【 授权许可】

   
2011 Jing et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705060902918.pdf 917KB PDF download
Figure 2. 99KB Image download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Kalluri R, Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest 2009, 119:1420-8.
  • [2]Larue L, Bellacosa A: Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene 2005, 24:7443-54.
  • [3]Martin FT, Dwyer RM, Kelly J, Khan S, Murphy JM, Curran C, Miller N, Hennessy E, Dockery P, Barry FP, O'Brien T, Kerin MJ: Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat 2010, 124:317-26.
  • [4]Yang MH, Chen CL, Chau GY, Chiou SH, Su CW, Chou TY, Peng WL, Wu JC: Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology 2009, 50:1464-74.
  • [5]Sun T, Zhao N, Zhao XL, Gu Q, Zhang SW, Che N, Wang XH, Du J, Liu YX, Sun BC: Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology 2010, 51:545-56.
  • [6]Peinado H, Olmeda D, Cano A: Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007, 7:415-28.
  • [7]Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R, Kirchner T: Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 2001, 98:10356-61.
  • [8]Mantovani A, Allavena P, Sica A, Balkwill F: Cancer-related inflammation. Nature 2008, 454:436-44.
  • [9]Cordon-Cardo C, Prives C: At the crossroads of inflammation and tumorigenesis. J Exp Med 1999, 190:1367-70.
  • [10]Solinas G, Marchesi F, Garlanda C, Mantovani A, Allavena P: Inflammation-mediated promotion of invasion and metastasis. Cancer Metastasis Rev 2010, 29:243-8.
  • [11]Giavazzi R, Garofalo A, Bani MR, Abbate M, Ghezzi P, Boraschi D, Mantovani A, Dejana E: Interleukin 1-induced augmentation of experimental metastases from a human melanoma in nude mice. Cancer Res 1990, 50:4771-5.
  • [12]Balkwill F: Tumour necrosis factor and cancer. Nat Rev Cancer 2009, 9:361-71.
  • [13]Condeelis J, Segall JE: Intravital imaging of cell movement in tumours. Nat Rev Cancer 2003, 3:921-30.
  • [14]Dong R, Wang Q, He XL, Chu YK, Lu JG, Ma QJ: Role of nuclear factor kappa B and reactive oxygen species in the tumor necrosis factor-alpha-induced epithelial-mesenchymal transition of MCF-7 cells. Braz J Med Biol Res 2007, 40:1071-8.
  • [15]Sullivan DE, Ferris M, Nguyen H, Abboud E, Brody AR: TNF-alpha induces TGF-beta1 expression in lung fibroblasts at the transcriptional level via AP-1 activation. J Cell Mol Med 2009, 13:1866-76.
  • [16]Bates RC, Mercurio AM: Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol Biol Cell 2003, 14:1790-800.
  • [17]Miettinen PJ, Ebner R, Lopez AR, Derynck R: TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 1994, 127:2021-36.
  • [18]Ding G, Pesek-Diamond I, Diamond JR: Cholesterol, macrophages, and gene expression of TGF-beta 1 and fibronectin during nephrosis. Am J Physiol 1993, 264:F577-84.
  • [19]Diamond JR, Ricardo SD, Klahr S: Mechanisms of interstitial fibrosis in obstructive nephropathy. Semin Nephrol 1998, 18:594-602.
  • [20]Siegel PM, Massague J: Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 2003, 3:807-21.
  • [21]Jakowlew SB: Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev 2006, 25:435-57.
  • [22]Massague J: TGF-beta in Cancer. Cell 2008, 134:215-30.
  • [23]Galliher AJ, Neil JR, Schiemann WP: Role of transforming growth factor-beta in cancer progression. Future Oncol 2006, 2:743-63.
  • [24]Lewis MP, Lygoe KA, Nystrom ML, Anderson WP, Speight PM, Marshall JF, Thomas GJ: Tumour-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer 2004, 90:822-32.
  • [25]Xu Z, Shen MX, Ma DZ, Wang LY, Zha XL: TGF-beta1-promoted epithelial-to-mesenchymal transformation and cell adhesion contribute to TGF-beta1-enhanced cell migration in SMMC-7721 cells. Cell Res 2003, 13:343-50.
  • [26]Boutet A, De Frutos CA, Maxwell PH, Mayol MJ, Romero J, Nieto MA: Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. Embo J 2006, 25:5603-13.
  • [27]Lyons JG, Patel V, Roue NC, Fok SY, Soon LL, Halliday GM, Gutkind JS: Snail up-regulates proinflammatory mediators and inhibits differentiation in oral keratinocytes. Cancer Res 2008, 68:4525-30.
  • [28]Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, Saito Y, Johnson RS, Kretzler M, Cohen CD, Eckardt KU, Iwano M, Haase VH: Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 2007, 117:3810-20.
  • [29]Copple BL: Hypoxia stimulates hepatocyte epithelial to mesenchymal transition by hypoxia-inducible factor and transforming growth factor-beta-dependent mechanisms. Liver Int 2010, 30:669-82.
  • [30]Luo D, Wang J, Li J, Post M: Mouse Snail Is a Target Gene for Hif. Mol Cancer Res 2011, 9:234-45.
  • [31]Zhou G, Dada LA, Wu M, Kelly A, Trejo H, Zhou Q, Varga J, Sznajder JI: Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1. Am J Physiol Lung Cell Mol Physiol 2009, 297:L1120-30.
  • [32]Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, Werb Z, Bissell MJ: Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 2005, 436:123-7.
  • [33]Rhyu DY, Yang Y, Ha H, Lee GT, Song JS, Uh ST, Lee HB: Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol 2005, 16:667-75.
  • [34]Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H: NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 2007, 26:711-24.
  • [35]Bubici C, Papa S, Pham CG, Zazzeroni F, Franzoso G: NF-kappaB and JNK: an intricate affair. Cell Cycle 2004, 3:1524-9.
  • [36]Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002, 2:442-54.
  • [37]Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994, 367:645-8.
  • [38]Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003, 100:3983-8.
  • [39]O'Brien CA, Pollett A, Gallinger S, Dick JE: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007, 445:106-10.
  • [40]Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB: Identification of human brain tumour initiating cells. Nature 2004, 432:396-401.
  • [41]Fillmore CM, Kuperwasser C: Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 2008, 10:R25. BioMed Central Full Text
  • [42]Phillips TM, McBride WH, Pajonk F: The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 2006, 98:1777-85.
  • [43]Du Z, Qin R, Wei C, Wang M, Shi C, Tian R, Peng C: Pancreatic Cancer Cells Resistant to Chemoradiotherapy Rich in "Stem-Cell-Like" Tumor Cells. Dig Dis Sci 2011, 56:741-50.
  • [44]Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133:704-15.
  • [45]Louie E, Nik S, Chen JS, Schmidt M, Song B, Pacson C, Chen XF, Park S, Ju J, Chen EI: Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res 2010, 12:R94. BioMed Central Full Text
  • [46]Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284:143-7.
  • [47]Barry FP, Murphy JM: Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 2004, 36:568-84.
  • [48]Hall B, Andreeff M, Marini F: The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol 2007, 263-83.
  • [49]Kumar S, Chanda D, Ponnazhagan S: Therapeutic potential of genetically modified mesenchymal stem cells. Gene Ther 2008, 15:711-5.
  • [50]Ouyang G, Wang Z, Fang X, Liu J, Yang CJ: Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer stem cells. Cell Mol Life Sci 2010, 67:2605-18.
  • [51]Derynck R, Akhurst RJ, Balmain A: TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001, 29:117-29.
  • [52]Massague J: How cells read TGF-beta signals. Nat Rev Mol Cell Biol 2000, 1:169-78.
  • [53]Derynck R, Zhang YE: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003, 425:577-84.
  • [54]Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL: Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 2005, 307:1603-9.
  • [55]Miyazono K: Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci 2009, 85:314-23.
  • [56]Fransvea E, Mazzocca A, Antonaci S, Giannelli G: Targeting transforming growth factor (TGF)-betaRI inhibits activation of beta1 integrin and blocks vascular invasion in hepatocellular carcinoma. Hepatology 2009, 49:839-50.
  • [57]Fransvea E, Angelotti U, Antonaci S, Giannelli G: Blocking transforming growth factor-beta up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells. Hepatology 2008, 47:1557-66.
  • [58]Yang JD, Nakamura I, Roberts LR: The tumor microenvironment in hepatocellular carcinoma: Current status and therapeutic targets. Semin Cancer Biol 2011, 21:35-43.
  • [59]Min C, Eddy SF, Sherr DH, Sonenshein GE: NF-kappaB and epithelial to mesenchymal transition of cancer. J Cell Biochem 2008, 104:733-44.
  • [60]Julien S, Puig I, Caretti E, Bonaventure J, Nelles L, van Roy F, Dargemont C, de Herreros AG, Bellacosa A, Larue L: Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene 2007, 26:7445-56.
  • [61]Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, Kraut N, Beug H, Wirth T: NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 2004, 114:569-81.
  • [62]Maier HJ, Schmidt-Strassburger U, Huber MA, Wiedemann EM, Beug H, Wirth T: NF-kappa B promotes epithelial-mesenchymal transition, migration and invasion of pancreatic carcinoma cells. Cancer Lett 2010, 295:214-28.
  • [63]Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P, Huber M, Hohl D, Cano A, Birchmeier W, Huelsken J: Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature 2008, 452:650-3.
  • [64]Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, Bell G, Guo W, Rubin J, Richardson AL, Weinberg RA: Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 2011, 145:926-40.
  • [65]Niessen K, Fu Y, Chang L, Hoodless PA, McFadden D, Karsan A: Slug is a direct Notch target required for initiation of cardiac cushion cellularization. J Cell Biol 2008, 182:315-25.
  • [66]Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM, Eberhart CG: Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 2006, 66:7445-52.
  文献评价指标  
  下载次数:14次 浏览次数:12次