期刊论文详细信息
Journal of Hematology & Oncology
Mutated in colorectal cancer (MCC) is a novel oncogene in B lymphocytes
Ping Xie4  Ronald P Hart4  David H Perlman1  Yan Liu2  Carissa R Moore2  Jacqueline Baron2  Shanique KE Edwards3 
[1] Princeton Collaborative Proteomics & Mass Spectrometry Center, Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton 08544, NJ, USA;Department of Cell Biology and Neuroscience, Piscataway 08854, NJ, USA;Graduate Program in Molecular Biosciences, Piscataway 08854, NJ, USA;Rutgers Cancer Institute of New Jersey, New Brunswick, USA
关键词: PHB2;    PARP1;    Multiple myeloma;    B lymphoma;    TRAF3;    MCC;   
Others  :  1144424
DOI  :  10.1186/s13045-014-0056-6
 received in 2014-06-07, accepted in 2014-07-24,  发布年份 2014
PDF
【 摘 要 】

Background

Identification of novel genetic risk factors is imperative for a better understanding of B lymphomagenesis and for the development of novel therapeutic strategies. TRAF3, a critical regulator of B cell survival, was recently recognized as a tumor suppressor gene in B lymphocytes. The present study aimed to identify novel oncogenes involved in malignant transformation of TRAF3-deficient B cells.

Methods

We used microarray analysis to identify genes differentially expressed in TRAF3?/? mouse splenic B lymphomas. We employed lentiviral vector-mediated knockdown or overexpression to manipulate gene expression in human multiple myeloma (MM) cell lines. We analyzed cell apoptosis and proliferation using flow cytometry, and performed biochemical studies to investigate signaling mechanisms. To delineate protein-protein interactions, we applied affinity purification followed by mass spectrometry-based sequencing.

Results

We identified mutated in colorectal cancer (MCC) as a gene strikingly up-regulated in TRAF3-deficient mouse B lymphomas and human MM cell lines. Aberrant up-regulation of MCC also occurs in a variety of primary human B cell malignancies, including non-Hodgkin lymphoma (NHL) and MM. In contrast, MCC expression was not detected in normal or premalignant TRAF3?/? B cells even after treatment with B cell stimuli, suggesting that aberrant up-regulation of MCC is specifically associated with malignant transformation of B cells. In elucidating the functional roles of MCC in malignant B cells, we found that lentiviral shRNA vector-mediated knockdown of MCC induced apoptosis and inhibited proliferation in human MM cells. Experiments of knockdown and overexpression of MCC allowed us to identify several downstream targets of MCC in human MM cells, including phospho-ERK, c-Myc, p27, cyclin B1, Mcl-1, caspases 8 and 3. Furthermore, we identified 365 proteins (including 326 novel MCC-interactors) in the MCC interactome, among which PARP1 and PHB2 were two hubs of MCC signaling pathways in human MM cells.

Conclusions

Our results indicate that in sharp contrast to its tumor suppressive role in colorectal cancer, MCC functions as an oncogene in B cells. Our findings suggest that MCC may serve as a diagnostic marker and therapeutic target in B cell malignancies, including NHL and MM.

【 授权许可】

   
2014 Edwards et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330134251303.pdf 2092KB PDF download
Figure 8. 124KB Image download
Figure 7. 86KB Image download
Figure 6. 71KB Image download
Figure 5. 111KB Image download
Figure 4. 70KB Image download
Figure 3. 57KB Image download
Figure 2. 60KB Image download
Figure 1. 99KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Morton LM, Wang SS, Devesa SS, Hartge P, Weisenburger DD, Linet MS: Lymphoma incidence patterns by WHO subtype in the United States, 1992¿2001. Blood 2006, 107:265-276.
  • [2]Ruddon R: The Epidemiology of Human Cancer. In Book: Cancer Biology. 4th edition. Edited by Ruddon RW. Oxford University Press, New York, NY, USA; 2007:62-116.
  • [3]Skibola CF, Curry JD, Nieters A: Genetic susceptibility to lymphoma. Haematologica 2007, 92:960-969.
  • [4]Peled JU, Kuang FL, Iglesias-Ussel MD, Roa S, Kalis SL, Goodman MF, Scharff MD: The biochemistry of somatic hypermutation. Annu Rev Immunol 2008, 26:481-511.
  • [5]Pasqualucci L, Bhagat G, Jankovic M, Compagno M, Smith P, Muramatsu M, Honjo T, Morse HC 3rd, Nussenzweig MC, Dalla-Favera R: AID is required for germinal center-derived lymphomagenesis. Nat Genet 2008, 40:108-112.
  • [6]Xie P: TRAF molecules in cell signaling and in human diseases. J Mol Signal 2013, 8:7. BioMed Central Full Text
  • [7]Boucher LM, Marengere LE, Lu Y, Thukral S, Mak TW: Binding sites of cytoplasmic effectors TRAF1, 2, and 3 on CD30 and other members of the TNF receptor superfamily. Biochem Biophys Res Commun 1997, 233:592-600.
  • [8]Nagel I, Bug S, Tonnies H, Ammerpohl O, Richter J, Vater I, Callet-Bauchu E, Calasanz MJ, Martinez-Climent JA, Bastard C, Salido M, Schroers E, Martin-Subero JI, Gesk S, Harder L, Majid A, Dyer MJ, Siebert R: Biallelic inactivation of TRAF3 in a subset of B-cell lymphomas with interstitial del(14)(q24.1q32.33). Leukemia 2009, 23:2153-2155.
  • [9]Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ, Van Wier S, Tiedemann R, Shi CX, Sebag M, Braggio E, Henry T, Zhu YX, Fogle H, Price-Troska T, Ahmann G, Mancini C, Brents LA, Kumar S, Greipp P, Dispenzieri A, Bryant B, Mulligan G, Bruhn L, Barrett M, Valdez R, Trent J, Stewart AK, Carpten J, Bergsagel PL: Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007, 12:131-144.
  • [10]Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F, Lenz G, Hanamura I, Wright G, Xiao W, Dave S, Hurt EM, Tan B, Zhao H, Stephens O, Santra M, Williams DR, Dang L, Barlogie B, Shaughnessy JD Jr, Kuehl WM, Staudt LM: Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007, 12:115-130.
  • [11]Braggio E, Keats JJ, Leleu X, Van Wier S, Jimenez-Zepeda VH, Valdez R, Schop RF, Price-Troska T, Henderson K, Sacco A, Azab F, Greipp P, Gertz M, Hayman S, Rajkumar SV, Carpten J, Chesi M, Barrett M, Stewart AK, Dogan A, Bergsagel PL, Ghobrial IM, Fonseca R: Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-kappaB signaling pathways in Waldenstrom¿s macroglobulinemia. Cancer Res 2009, 69:3579-3588.
  • [12]Xie P, Stunz LL, Larison KD, Yang B, Bishop GA: Tumor necrosis factor receptor-associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity 2007, 27:253-267.
  • [13]Moore CR, Liu Y, Shao CS, Covey LR, Morse HC 3rd, Xie P: Specific deletion of TRAF3 in B lymphocytes leads to B lymphoma development in mice. Leukemia 2012, 26:1122-1127.
  • [14]Kinzler KW, Nilbert MC, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hamilton SR, Hedge P, Markham A, Carlson M, Joslyn G, Groden J, White R, Miki Y, Miyoshi Y, Nishisho I, Nakamura Y: Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. Science 1991, 251:1366-1370.
  • [15]Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, Koyama K, Utsunomiya J, Baba S, Hedge P: Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 1991, 253:665-669.
  • [16]Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, Joslyn G, Stevens J, Spirio L, Robertson M, Sargeant L, Krapcho K, Wolff E, Burt R, Hughes J, Warrington J, McPherson J, Wasmuth J, Le Paslier D, Abderrahim H, Cohen D, Leppert M, White R: Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991, 66:589-600.
  • [17]Ashton-Rickardt PG, Wyllie AH, Bird CC, Dunlop MG, Steel CM, Morris RG, Piris J, Romanowski P, Wood R, White R, Nakamura Y: MCC, a candidate familial polyposis gene in 5q.21, shows frequent allele loss in colorectal and lung cancer. Oncogene 1991, 6:1881-1886.
  • [18]Starr TK, Allaei R, Silverstein KA, Staggs RA, Sarver AL, Bergemann TL, Gupta M, O¿Sullivan MG, Matise I, Dupuy AJ, Collier LS, Powers S, Oberg AL, Asmann YW, Thibodeau SN, Tessarollo L, Copeland NG, Jenkins NA, Cormier RT, Largaespada DA: A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 2009, 323:1747-1750.
  • [19]Kohonen-Corish MR, Sigglekow ND, Susanto J, Chapuis PH, Bokey EL, Dent OF, Chan C, Lin BP, Seng TJ, Laird PW, Young J, Leggett BA, Jass JR, Sutherland RL: Promoter methylation of the mutated in colorectal cancer gene is a frequent early event in colorectal cancer. Oncogene 2007, 26:4435-4441.
  • [20]Fukuyama R, Niculaita R, Ng KP, Obusez E, Sanchez J, Kalady M, Aung PP, Casey G, Sizemore N: Mutated in colorectal cancer, a putative tumor suppressor for serrated colorectal cancer, selectively represses beta-catenin-dependent transcription. Oncogene 2008, 27:6044-6055.
  • [21]Fu X, Li L, Peng Y: Wnt signalling pathway in the serrated neoplastic pathway of the colorectum: possible roles and epigenetic regulatory mechanisms. J Clin Pathol 2012, 65:675-679.
  • [22]Li L, Fu X, Zhang W, Xiao L, Qiu Y, Peng Y, Shi L, Chen X, Zhou X, Deng M: Wnt signaling pathway is activated in right colon serrated polyps correlating to specific molecular form of beta-catenin. Hum Pathol 2013, 44:1079-1088.
  • [23]D¿Amico D, Carbone DP, Johnson BE, Meltzer SJ, Minna JD: Polymorphic sites within the MCC and APC loci reveal very frequent loss of heterozygosity in human small cell lung cancer. Cancer Res 1992, 52:1996-1999.
  • [24]Sud R, Talbot IC, Delhanty JD: Infrequent alterations of the APC and MCC genes in gastric cancers from British patients. Br J Cancer 1996, 74:1104-1108.
  • [25]Huang Y, Boynton RF, Blount PL, Silverstein RJ, Yin J, Tong Y, McDaniel TK, Newkirk C, Resau JH, Sridhara R, Reid BJ, Meltzer SJ: Loss of heterozygosity involves multiple tumor suppressor genes in human esophageal cancers. Cancer Res 1992, 52:6525-6530.
  • [26]Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, Calderaro J, Bioulac-Sage P, Letexier M, Degos F, Clement B, Balabaud C, Chevet E, Laurent A, Couchy G, Letouze E, Calvo F, Zucman-Rossi J: Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 2012, 44:694-698.
  • [27]Shukla R, Upton KR, Munoz-Lopez M, Gerhardt DJ, Fisher ME, Nguyen T, Brennan PM, Baillie JK, Collino A, Ghisletti S, Sinha S, Iannelli F, Radaelli E, Dos Santos A, Rapoud D, Guettier C, Samuel D, Natoli G, Carninci P, Ciccarelli FD, Garcia-Perez JL, Faivre J, Faulkner GJ: Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 2013, 153:101-111.
  • [28]Mukherjee N, Bhattacharya N, Sinha S, Alam N, Chakravarti R, Roychoudhury S, Panda CK: Association of APC and MCC polymorphisms with increased breast cancer risk in an Indian population. Int J Biol Markers 2011, 26:43-49.
  • [29]Young T, Poobalan Y, Ali Y, Siew Tein W, Sadasivam A, Ee Kim T, Erica Tay P, Dunn NR: Mutated in colorectal cancer (Mcc), a candidate tumor suppressor, is dynamically expressed during mouse embryogenesis. Dev Dyn 2011, 240:2166-2174.
  • [30]Heyer J, Yang K, Lipkin M, Edelmann W, Kucherlapati R: Mouse models for colorectal cancer. Oncogene 1999, 18:5325-5333.
  • [31]Matsumine A, Senda T, Baeg GH, Roy BC, Nakamura Y, Noda M, Toyoshima K, Akiyama T: MCC, a cytoplasmic protein that blocks cell cycle progression from the G0/G1 to S phase. J Biol Chem 1996, 271:10341-10346.
  • [32]Sigglekow ND, Pangon L, Brummer T, Molloy M, Hawkins NJ, Ward RL, Musgrove EA, Kohonen-Corish MR: Mutated in colorectal cancer protein modulates the NFkappaB pathway. Anticancer Res 2012, 32:73-79.
  • [33]Arnaud C, Sebbagh M, Nola S, Audebert S, Bidaut G, Hermant A, Gayet O, Dusetti NJ, Ollendorff V, Santoni MJ, Borg JP, Lecine P: MCC, a new interacting protein for Scrib, is required for cell migration in epithelial cells. FEBS Lett 2009, 583:2326-2332.
  • [34]Pangon L, Van Kralingen C, Abas M, Daly RJ, Musgrove EA, Kohonen-Corish MR: The PDZ-binding motif of MCC is phosphorylated at position ?1 and controls lamellipodia formation in colon epithelial cells. Biochim Biophys Acta 1823, 2012:1058-1067.
  • [35]Pangon L, Sigglekow ND, Larance M, Al-Sohaily S, Mladenova DN, Selinger CI, Musgrove EA, Kohonen-Corish MR: The ¿mutated in colorectal cancer¿ protein is a novel target of the UV-induced DNA damage checkpoint. Genes Cancer 2010, 1:917-926.
  • [36]Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B, Superti-Furga G: A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 2004, 6:97-105.
  • [37]Senda T, Matsumine A, Yanai H, Akiyama T: Localization of MCC (mutated in colorectal cancer) in various tissues of mice and its involvement in cell differentiation. J Histochem Cytochem 1999, 47:1149-1158.
  • [38]Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A: Reverse engineering of regulatory networks in human B cells. Nat Genet 2005, 37:382-390.
  • [39]Zhan F, Hardin J, Kordsmeier B, Bumm K, Zheng M, Tian E, Sanderson R, Yang Y, Wilson C, Zangari M, Anaissie E, Morris C, Muwalla F, van Rhee F, Fassas A, Crowley J, Tricot G, Barlogie B, Shaughnessy J Jr: Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 2002, 99:1745-1757.
  • [40]Zhan F, Tian E, Bumm K, Smith R, Barlogie B, Shaughnessy J Jr: Gene expression profiling of human plasma cell differentiation and classification of multiple myeloma based on similarities to distinct stages of late-stage B-cell development. Blood 2003, 101:1128-1140.
  • [41]Zhan F, Barlogie B, Arzoumanian V, Huang Y, Williams DR, Hollmig K, Pineda-Roman M, Tricot G, van Rhee F, Zangari M, Dhodapkar M, Shaughnessy JD Jr: Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood 2007, 109:1692-1700.
  • [42]Bric A, Miething C, Bialucha CU, Scuoppo C, Zender L, Krasnitz A, Xuan Z, Zuber J, Wigler M, Hicks J, McCombie RW, Hemann MT, Hannon GJ, Powers S, Lowe SW: Functional identification of tumor-suppressor genes through an in vivo RNA interference screen in a mouse lymphoma model. Cancer Cell 2009, 16:324-335.
  • [43]Kumar H, Kawai T, Akira S: Toll-like receptors and innate immunity. Biochem Biophys Res Commun 2009, 388:621-625.
  • [44]Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, Paul JE, Boyle M, Woolcock BW, Kuchenbauer F, Yap D, Humphries RK, Griffith OL, Shah S, Zhu H, Kimbara M, Shashkin P, Charlot JF, Tcherpakov M, Corbett R, Tam A, Varhol R, Smailus D, Moksa M, Zhao Y, Delaney A, Qian H, Birol I, Schein J, Moore R, et al.: Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 2010, 42:181-185.
  • [45]McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, Liu Y, Graves AP, Della Pietra A 3rd, Diaz E, LaFrance LV, Mellinger M, Duquenne C, Tian X, Kruger RG, McHugh CF, Brandt M, Miller WH, Dhanak D, Verma SK, Tummino PJ, Creasy CL: EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 2012, 492:108-112.
  • [46]Kalushkova A, Fryknas M, Lemaire M, Fristedt C, Agarwal P, Eriksson M, Deleu S, Atadja P, Osterborg A, Nilsson K, Vanderkerken K, Oberg F, Jernberg-Wiklund H: Polycomb target genes are silenced in multiple myeloma. PLoS One 2010, 5:e11483.
  • [47]Ezponda T, Licht JD: Molecular pathways: deregulation of histone 3 lysine 27 methylation in cancer-different paths, same destination.Clin Cancer Res 2014, In press.
  • [48]Figueroa ME, Reimers M, Thompson RF, Ye K, Li Y, Selzer RR, Fridriksson J, Paietta E, Wiernik P, Green RD, Greally JM, Melnick A: An integrative genomic and epigenomic approach for the study of transcriptional regulation. PLoS One 2008, 3:e1882.
  • [49]Scuto A, Kirschbaum M, Kowolik C, Kretzner L, Juhasz A, Atadja P, Pullarkat V, Bhatia R, Forman S, Yen Y, Jove R: The novel histone deacetylase inhibitor, LBH589, induces expression of DNA damage response genes and apoptosis in Ph- acute lymphoblastic leukemia cells. Blood 2008, 111:5093-5100.
  • [50]Escoubet-Lozach L, Lin IL, Jensen-Pergakes K, Brady HA, Gandhi AK, Schafer PH, Muller GW, Worland PJ, Chan KW, Verhelle D: Pomalidomide and lenalidomide induce p21 WAF-1 expression in both lymphoma and multiple myeloma through a LSD1-mediated epigenetic mechanism. Cancer Res 2009, 69:7347-7356.
  • [51]Krejci J, Harnicarova A, Streitova D, Hajek R, Pour L, Kozubek S, Bartova E: Epigenetics of multiple myeloma after treatment with cytostatics and gamma radiation. Leuk Res 2009, 33:1490-1498.
  • [52]Zhao X, Zhang W, Wang L, Zhao WL: Genetic methylation and lymphoid malignancies: biomarkers of tumor progression and targeted therapy. Biomark Res 2013, 1:24. BioMed Central Full Text
  • [53]Goff LA, Rinn JL: Poly-combing the genome for RNA. Nat Struct Mol Biol 2013, 20:1344-1346.
  • [54]da Rocha ST, Boeva V, Escamilla-Del-Arenal M, Ancelin K, Granier C, Matias NR, Sanulli S, Chow J, Schulz E, Picard C, Kaneko S, Helin K, Reinberg D, Stewart AF, Wutz A, Margueron R, Heard E: Jarid2 is implicated in the initial xist-induced targeting of PRC2 to the inactive X chromosome. Mol Cell 2014, 53:301-316.
  • [55]Lu KT, Dryer RL, Song C, Covey LR: Maintenance of the CD40-related immunodeficient response in hyper-IgM B cells immortalized with a LMP1-regulated mini-EBV. J Leukoc Biol 2005, 78:620-629.
  • [56]Yang QH, Church-Hajduk R, Ren J, Newton ML, Du C: Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev 2003, 17:1487-1496.
  • [57]Ciechanover A: Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Bioorg Med Chem 2013, 21:3400-3410.
  • [58]Flick K, Kaiser P: Protein degradation and the stress response. Semin Cell Dev Biol 2012, 23:515-522.
  • [59]Klionsky DJ, Schulman BA: Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat Struct Mol Biol 2014, 21:336-345.
  • [60]Smith SM, Anastasi J, Cohen KS, Godley LA: The impact of MYC expression in lymphoma biology: beyond Burkitt lymphoma. Blood Cells Mol Dis 2010, 45:317-323.
  • [61]Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O¿Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, et al.: Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol 2007, 3:89.
  • [62]Weaver AN, Yang ES: Beyond DNA repair: additional functions of PARP-1 in cancer. Front Oncol 2013, 3:290.
  • [63]Cohen-Armon M: PARP-1 activation in the ERK signaling pathway. Trends Pharmacol Sci 2007, 28:556-560.
  • [64]Artal-Sanz M, Tavernarakis N: Prohibitin and mitochondrial biology. Trends Endocrinol Metab 2009, 20:394-401.
  • [65]Thuaud F, Ribeiro N, Nebigil CG, Desaubry L: Prohibitin ligands in cell death and survival: mode of action and therapeutic potential. Chem Biol 2013, 20:316-331.
  • [66]Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C: The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011, 39:D561-D568.
  • [67]Edwards SK, Desai A, Liu Y, Moore CR, Xie P: Expression and function of a novel isoform of Sox5 in malignant B cells. Leuk Res 2014, 38:393-401.
  • [68]Sakamaki J, Daitoku H, Yoshimochi K, Miwa M, Fukamizu A: Regulation of FOXO1-mediated transcription and cell proliferation by PARP-1. Biochem Biophys Res Commun 2009, 382:497-502.
  • [69]Harley ME, Allan LA, Sanderson HS, Clarke PR: Phosphorylation of Mcl-1 by CDK1-cyclin B1 initiates its Cdc20-dependent destruction during mitotic arrest. EMBO J 2010, 29:2407-2420.
  • [70]Sakurikar N, Eichhorn JM, Chambers TC: Cyclin-dependent kinase-1 (Cdk1)/cyclin B1 dictates cell fate after mitotic arrest via phosphoregulation of antiapoptotic Bcl-2 proteins. J Biol Chem 2012, 287:39193-39204.
  • [71]Zhou TB, Qin YH: Signaling pathways of prohibitin and its role in diseases. J Recept Signal Transduct Res 2013, 33:28-36.
  • [72]Kategaya LS, Hilliard A, Zhang L, Asara JM, Ptacek LJ, Fu YH: Casein kinase 1 proteomics reveal prohibitin 2 function in molecular clock. PLoS One 2012, 7:e31987.
  • [73]Marampon F, Ciccarelli C, Zani BM: Down-regulation of c-Myc following MEK/ERK inhibition halts the expression of malignant phenotype in rhabdomyosarcoma and in non muscle-derived human tumors. Mol Cancer 2006, 5:31. BioMed Central Full Text
  • [74]Dangi S, Chen FM, Shapiro P: Activation of extracellular signal-regulated kinase (ERK) in G2 phase delays mitotic entry through p21CIP1. Cell Prolif 2006, 39:261-279.
  • [75]Yoshida GJ, Saya H: Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation. Biochem Biophys Res Commun 2014, 443:622-627.
  • [76]Willert K, Jones KA: Wnt signaling: is the party in the nucleus? Genes Dev 2006, 20:1394-1404.
  • [77]Kuramori C, Azuma M, Kume K, Kaneko Y, Inoue A, Yamaguchi Y, Kabe Y, Hosoya T, Kizaki M, Suematsu M, Handa H: Capsaicin binds to prohibitin 2 and displaces it from the mitochondria to the nucleus. Biochem Biophys Res Commun 2009, 379:519-525.
  • [78]Osman C, Merkwirth C, Langer T: Prohibitins and the functional compartmentalization of mitochondrial membranes. J Cell Sci 2009, 122:3823-3830.
  • [79]Li-Weber M: Molecular mechanisms and anti-cancer aspects of the medicinal phytochemicals rocaglamides (=flavaglines).Int J Cancer 2014, In press.
  • [80]Edwards SK, Moore CR, Liu Y, Grewal S, Covey LR, Xie P: N-benzyladriamycin-14-valerate (AD 198) exhibits potent anti-tumor activity on TRAF3-deficient mouse B lymphoma and human multiple myeloma. BMC Cancer 2013, 13:481. BioMed Central Full Text
  • [81]Du P, Kibbe WA, Lin SM: nuID: a universal naming scheme of oligonucleotides for illumina, affymetrix, and other microarrays. Biol Direct 2007, 2:16. BioMed Central Full Text
  • [82]Du P, Kibbe WA, Lin SM: Lumi: a pipeline for processing Illumina microarray. Bioinformatics 2008, 24:1547-1548.
  • [83]Smyth G: Limma: linear models for microarray data. Springer, New York; 2005.
  • [84]Xie P, Poovassery J, Stunz LL, Smith SM, Schultz ML, Carlin LE, Bishop GA: Enhanced Toll-like receptor (TLR) responses of TNFR-associated factor 3 (TRAF3)-deficient B lymphocytes. J Leukoc Biol 2011, 90:1149-1157.
  • [85]Urist M, Tanaka T, Poyurovsky MV, Prives C: p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev 2004, 18:3041-3054.
  • [86]Li J, Chen J, Ricupero CL, Hart RP, Schwartz MS, Kusnecov A, Herrup K: Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat Med 2012, 18:783-790.
  • [87]Zhou S, Kurt-Jones EA, Cerny AM, Chan M, Bronson RT, Finberg RW: MyD88 intrinsically regulates CD4 T-cell responses. J Virol 2009, 83:1625-1634.
  • [88]Li Y, Franklin S, Zhang MJ, Vondriska TM: Highly efficient purification of protein complexes from mammalian cells using a novel streptavidin-binding peptide and hexahistidine tandem tag system: application to Bruton¿s tyrosine kinase. Protein Sci 2010, 20:140-149.
  • [89]Porter JF, Vavassori S, Covey LR: A polypyrimidine tract-binding protein-dependent pathway of mRNA stability initiates with CpG activation of primary B cells. J Immunol 2008, 181:3336-3345.
  • [90]Xie P, Kraus ZJ, Stunz LL, Liu Y, Bishop GA: TNF receptor-associated factor 3 is required for T cell-mediated immunity and TCR/CD28 signaling. J Immunol 2011, 186:143-155.
  • [91]Wan Q, Kuang E, Dong W, Zhou S, Xu H, Qi Y, Liu Y: Reticulon 3 mediates Bcl-2 accumulation in mitochondria in response to endoplasmic reticulum stress. Apoptosis 2007, 12:319-328.
  • [92]Simmen T, Aslan JE, Blagoveshchenskaya AD, Thomas L, Wan L, Xiang Y, Feliciangeli SF, Hung CH, Crump CM, Thomas G: PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. Embo J 2005, 24:717-729.
  • [93]Darios F, Corti O, Lucking CB, Hampe C, Muriel MP, Abbas N, Gu WJ, Hirsch EC, Rooney T, Ruberg M, Brice A: Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum Mol Genet 2003, 12:517-526.
  • [94]Vento MT, Zazzu V, Loffreda A, Cross JR, Downward J, Stoppelli MP, Iaccarino I: Praf2 is a novel Bcl-xL/Bcl-2 interacting protein with the ability to modulate survival of cancer cells. PLoS One 2011, 5:e15636.
  • [95]Khan Z, Amini S, Bloom JS, Ruse C, Caudy AA, Kruglyak L, Singh M, Perlman DH, Tavazoie S: Accurate proteome-wide protein quantification from high-resolution 15 N mass spectra. Genome Biol 2011, 12:R122. BioMed Central Full Text
  • [96]Ying W, Perlman DH, Li L, Theberge R, Costello CE, McComb ME: Highly efficient and selective enrichment of peptide subsets combining fluorous chemistry with reversed-phase chromatography. Rapid Commun Mass Spectrom 2009, 23:4019-4030.
  文献评价指标  
  下载次数:77次 浏览次数:14次