期刊论文详细信息
Journal for ImmunoTherapy of Cancer
Immunotherapeutic approaches to ovarian cancer treatment
Holbrook Kohrt2  Jonathan S Berek1  Oliver Dorigo1  Cariad Chester2 
[1] Stanford Women’s Cancer Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford 94305, CA, U.S.A;Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
关键词: ACT;    Cancer vaccine;    IDO;    Immune checkpoint blockade;    TAM;    Antibody;    ID8;    Ovarian cancer;   
Others  :  1144130
DOI  :  10.1186/s40425-015-0051-7
 received in 2014-11-24, accepted in 2015-02-16,  发布年份 2015
PDF
【 摘 要 】

Despite advances in combinatorial chemotherapy regimens and the advent of intraperitoneal chemotherapy administration, current therapeutic options for ovarian cancer patients are inadequate. Immunotherapy offers a novel and promising therapeutic strategy for treating ovarian tumors. Following the demonstration of the immunogenicity of ovarian tumors, multiple immunotherapeutic modalities have been developed. Antibody-based therapies, immune checkpoint blockade, cancer vaccines, and chimeric antigen receptor-modified T cells have demonstrated preclinical success and entered clinical testing. In this review, we discuss these promising immunotherapeutic approaches and emphasize the importance of combinatorial treatment strategies and biomarker discovery.

【 授权许可】

   
2015 Kohrt et al; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150330090647135.pdf 442KB PDF download
【 参考文献 】
  • [1]Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al.: GLOBOCAN 2012 v1. 0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. International Agency for Research on Cancer, Lyon, France; 2013.
  • [2]Jayson GC, Kohn EC, Kitchener HC, Ledermann JA: Ovarian cancer. Lancet 2014, 384:1376-88.
  • [3]Goff BA, Mandel L, Muntz HG, Melancon CH: Ovarian carcinoma diagnosis. Cancer 2000, 89:2068-75.
  • [4]Herzog TJ: The current treatment of recurrent ovarian cancer. Current oncology reports 2006, 8:448-54.
  • [5]Baldwin LA, Huang B, Miller RW, Tucker T, Goodrich ST, Podzielinski I, et al.: Ten-year relative survival for epithelial ovarian cancer. Obstetrics and gynecology 2012, 120:612-8.
  • [6]Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al.: Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. NEJM 2003, 348:203-13.
  • [7]Hwang WT, Adams SF, Tahirovic E, Hagemann IS, Coukos G: Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecologic oncology 2012, 124:192-8.
  • [8]Chu CS, Kim SH, June CH, Coukos G: Immunotherapy opportunities in ovarian cancer. Expert review of anticancer therapy 2008, 8:243-57.
  • [9]Walters CL, Arend RC, Armstrong DK, Naumann RW, Alvarez RD: Folate and folate receptor alpha antagonists mechanism of action in ovarian cancer. Gynecologic oncology 2013, 131:493-8.
  • [10]Yakirevich E, Sabo E, Lavie O, Mazareb S, Spagnoli GC, Resnick MB: Expression of the MAGE-A4 and NY-ESO-1 cancer-testis antigens in serous ovarian neoplasms. Clinical cancer research 2003, 9:6453-60.
  • [11]Ferrara N, Gerber HP, LeCouter J: The biology of VEGF and its receptors. Nature medicine 2003, 9:669-76.
  • [12]Hsu JY, Wakelee HA: Monoclonal antibodies targeting vascular endothelial growth factor. BioDrugs 2009, 23:289-304.
  • [13]Hata K, Watanabe Y, Nakai H, Hata T, Hoshiai H: Expression of the vascular endothelial growth factor (VEGF) gene in epithelial ovarian cancer: an approach to anti-VEGF therapy. Anticancer research 2011, 31:731-7.
  • [14]Pujade-Lauraine E, Hilpert F, Weber B, Reuss A, Poveda A, Kristensen G, et al.: Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase III trial. J Clin Oncol 2014, 32:1302-8.
  • [15]Bellone S, Siegel ER, Cocco E, Cargnelutti M, Silasi DA, Azodi M, Schwartz PE, Rutherford TJ, Pecorelli S, Santin AD: Overexpression of epithelial cell adhesion molecule in primary, metastatic, and recurrent/chemotherapy-resistant epithelial ovarian cancer. International journal of gynecological cancer 2009;19:860–866.
  • [16]Linke R, Klein A, Seimetz D: Catumaxomab: clinical development and future directions. mAbs 2010, 2:129-36.
  • [17]Kohrt HE, Houot R, Marabelle A, Cho HJ, Osman K, Goldstein M, et al.: Combination strategies to enhance antitumor ADCC. Immunotherapy 2012, 4:511-27.
  • [18]Chester C, Marabelle A, Houot R, Kohrt HE: Dual antibody therapy to harness the innate anti-tumor immune response to enhance antibody targeting of tumors. Curr Opin Immunol. 2015, 33C:1-8.
  • [19]Heiss MM, Murawa P, Koralewski P, Kutarska E, Kolesnik OO, Ivanchenko VV, et al.: The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: Results of a prospective randomized phase II/III trial. International journal of cancer 2010, 127:2209-21.
  • [20]Berek JS, Edwards RP, Parker LP, DeMars LR, Herzog TJ, Lentz SS, et al.: Catumaxomab for the treatment of malignant ascites in patients with chemotherapy-refractory ovarian cancer: a phase II study. Int J Gynecol Cancer 2014, 24:1583-9.
  • [21]Patel D, Lahiji A, Patel S, Franklin M, Jimenez X, Hicklin DJ, et al.: Monoclonal antibody cetuximab binds to and down-regulates constitutively activated epidermal growth factor receptor vIII on the cell surface. Anticancer research 2007, 27:3355-66.
  • [22]Lin CK, Chao TK, Yu CP, Yu MH, Jin JS: The expression of six biomarkers in the four most common ovarian cancers: correlation with clinicopathological parameters. APMIS 2009, 117:162-75.
  • [23]Mendelsohn J, Baselga J: Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. Journal of clinical oncology 2003, 21:2787-99.
  • [24]Schilder RJ, Pathak HB, Lokshin AE, Holloway RW, Alvarez RD, Aghajanian C, et al.: Phase II trial of single agent cetuximab in patients with persistent or recurrent epithelial ovarian or primary peritoneal carcinoma with the potential for dose escalation to rash. Gynecologic oncology 2009, 113:21-7.
  • [25]Secord AA, Blessing JA, Armstrong DK, Rodgers WH, Miner Z, Barnes MN, et al.: Phase II trial of cetuximab and carboplatin in relapsed platinum-sensitive ovarian cancer and evaluation of epidermal growth factor receptor expression: A Gynecologic Oncology Group study. Gynecologic oncology 2008, 108:493-9.
  • [26]Steffensen KD, Waldstrom M, Pallisgard N, Lund B, Bergfeldt K, Wihl J, et al.: Panitumumab and pegylated liposomal doxorubicin in platinum-resistant epithelial ovarian cancer with KRAS wild-type: the PaLiDo study, a phase II nonrandomized multicenter study. International journal of gynecological cancer 2013, 23:73-80.
  • [27]Denkert C, Loibl S, Noske A, Roller M, Muller BM, Komor M, et al.: Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. Journal of clinical oncology 2010, 28:105-13.
  • [28]Halama N, Michel S, Kloor M, Zoernig I, Benner A, Spille A, et al.: Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer research 2011, 71:5670-7.
  • [29]Hato SV, De V, Lesterhuis WJ: STATing the importance of immune modulation by platinum chemotherapeutics. Oncoimmunology 2012, 1:234-6.
  • [30]Alagkiozidis I, Facciabene A, Carpenito C, Benencia F, Jonak Z, Adams S, et al.: Increased immunogenicity of surviving tumor cells enables cooperation between liposomal doxorubicin and IL-18. Journal of translational medicine 2009, 7:104. BioMed Central Full Text
  • [31]Fan Z, Baselga J, Masui H, Mendelsohn J: Antitumor effect of anti-epidermal growth factor receptor monoclonal antibodies plus cis-diamminedichloroplatinum on well established A431 cell xenografts. Cancer Res 1993, 53:4637-42.
  • [32]Ciardiello F, Bianco R, Damiano V, De Lorenzo S, Pepe S, De Placido S, et al.: Antitumor activity of sequential treatment with topotecan and anti-epidermal growth factor receptor monoclonal antibody C225. Clin Cancer Res 1999, 5:909-16.
  • [33]Wang X, Deavers M, Patenia R, Bassett RL, Mueller P, Ma Q, et al.: Monocyte/macrophage and T-cell infiltrates in peritoneum of patients with ovarian cancer or benign pelvic disease. Journal of translational medicine 2006, 4:30. BioMed Central Full Text
  • [34]Mantovani A, Sozzani S, Locati M, Allavena P, Sica A: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in immunology 2002, 23:549-55.
  • [35]Zhang S, Yu M, Deng H, Shen G, Wei Y: Polyclonal rabbit anti-human ovarian cancer globulins inhibit tumor growth through apoptosis involving the caspase signaling. Scientific reports 2014, 4:4984.
  • [36]Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al.: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature medicine 2004, 10:942-9.
  • [37]Kryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P, et al.: B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. The Journal of experimental medicine 2006, 203:871-81.
  • [38]Dangaj D, Lanitis E, Zhao A, Joshi S, Cheng Y, Sandaltzopoulos R, et al.: Novel recombinant human b7-h4 antibodies overcome tumoral immune escape to potentiate T-cell antitumor responses. Cancer research 2013, 73:4820-9.
  • [39]Hume DA, MacDonald KP: Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 2012, 119:1810-20.
  • [40]Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, et al.: Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer cell 2014, 25:846-59.
  • [41]Cassier PA: Phase 1 study of RG7155, a novel anti-CSF1R antibody, in patients with locally advanced pigmented villonodular synovitis (PVNS). 2014.
  • [42]Korman AJ, Peggs KS, Allison JP: Checkpoint blockade in cancer immunotherapy. Adv Immunol 2006, 90:297-339.
  • [43]Hathcock KS, Laszlo G, Pucillo C, Linsley P, Hodes RJ: Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function. J Exp Med 1994, 180:631-40.
  • [44]Azuma M, Ito D, Yagita H, Okumura K, Phillips JH, Lanier LL, et al.: B70 antigen is a second ligand for CTLA-4 and CD28. Nature 1993, 366:76-9.
  • [45]Chambers CA, Kuhns MS, Egen JG, Allison JP: CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 2001, 19:565-94.
  • [46]Egen JG, Kuhns MS, Allison JP: CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nature Immunology 2002, 3:611-8.
  • [47]Lipson EJ, Drake CG: Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clinical Cancer Research 2011, 17:6958-62.
  • [48]Terme M, Ullrich E, Aymeric L, Meinhardt K, Desbois M, Delahaye N, et al.: IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer research 2011, 71:5393-9.
  • [49]Maine CJ, Aziz NH, Chatterjee J, Hayford C, Brewig N, Whilding L, et al.: Programmed death ligand-1 over-expression correlates with malignancy and contributes to immune regulation in ovarian cancer. CII 2014, 63:215-24.
  • [50]Hamanishi J: Efficacy and safety of anti-PD-1 antibody (Nivolumab: BMS-936558, ONO-4538) in patients with platinum-resistant ovarian cancer. 2014.
  • [51]Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, et al.: Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 2014, 384:1109-17.
  • [52]Takikawa O: Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated l-tryptophan metabolism. Biochemical and biophysical research communications 2005, 338:12-9.
  • [53]Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB: Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. The Journal of experimental medicine 2002, 196:459-68.
  • [54]Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL: Inhibition of T cell proliferation by macrophage tryptophan catabolism. The Journal of experimental medicine 1999, 189:1363-72.
  • [55]Fallarino F, Grohmann U, Vacca C, Orabona C, Spreca A, Fioretti MC, et al.: T cell apoptosis by kynurenines. Advances in experimental medicine and biology 2003, 527:183-90.
  • [56]Morita T, Saito K, Takemura M, Maekawa N, Fujigaki S, Fujii H, et al.: L-tryptophan-kynurenine pathway metabolite 3-hydroxyanthranilic acid induces apoptosis in macrophage-derived cells under pathophysiological conditions. Adv Exp Med Biol 1999, 467:559-63.
  • [57]Chen W, Liang X, Peterson AJ, Munn DH, Blazar BR: The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. Journal of immunology 2008, 181:5396-404.
  • [58]Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, et al.: Evidence for a tumoral immune resistance mechanism based on tryptophan. Nature medicine 2003, 9:1269-74.
  • [59]Inaba T, Ino K, Kajiyama H, Yamamoto E, Shibata K, Nawa A, et al.: Role of the immunosuppressive enzyme indoleamine 2,3-dioxygenase in the progression of ovarian carcinoma. Gynecologic oncology 2009, 115:185-92.
  • [60]Nonaka H, Saga Y, Fujiwara H, Akimoto H, Yamada A, Kagawa S, et al.: Indoleamine 2,3-dioxygenase promotes peritoneal dissemination of ovarian cancer. International journal of oncology 2011, 38:113-20.
  • [61]Takao M, Okamoto A, Nikaido T, Urashima M, Takakura S, Saito M, et al.: Increased synthesis of indoleamine-2,3-dioxygenase protein is positively associated with impaired survival in patients with serous-type, but not with other types of, ovarian cancer. Oncology reports 2007, 17:1333-9.
  • [62]Okamoto A, Nikaido T, Ochiai K, Takakura S, Saito M, Aoki Y, et al.: Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clinical cancer research 2005, 11:6030-9.
  • [63]Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC: Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nature medicine 2005, 11:312-9.
  • [64]Tanizaki Y, Kobayashi A, Toujima S, Shiro M, Mizoguchi M, Mabuchi Y, et al.: Indoleamine 2,3-dioxygenase promotes peritoneal metastasis of ovarian cancer by inducing an immunosuppressive environment. Cancer science 2014, 105:966-73.
  • [65]Liu X, Shin N, Koblish HK, Yang G, Wang Q, Wang K, et al.: Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 2010, 115:3520-30.
  • [66]Jackson R, Dees EC, Kauh JS, et al.: A phase I study of indoximod in combination with docetaxel in metastatic solid tumors. 2013.
  • [67]Newton RC, Scherle PA, Bowman K, Liu X, Beatty GL, O’Dwyer PJ, et al.: Pharmacodynamic assessment of INCB024360, an inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1) in advancer cancer patients. 2012.
  • [68]Ravishankar B, Liu H, Shinde R, Chandler P, Baban B, Tanaka M, et al.: Tolerance to apoptotic cells is regulated by indoleamine 2,3-dioxygenase. PNAS 2012, 109:3909-14.
  • [69]Lakshminarayanan V, Thompson P, Wolfert MA, Buskas T, Bradley JM, Pathangey LB, et al.: Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine. PNAS 2012, 109:261-6.
  • [70]Gray HJ, Gargosky SE: Progression-free survival in ovarian cancer patients in second remission with mucin-1 autologous dendritic cell therapy. Abstract #5504. Oral Presentation. 2014.
  • [71]Yuan J, Kashiwagi S, Reeves P, Nezivar J, Yang Y, Arrifin NH, et al.: A novel mycobacterial Hsp70-containing fusion protein targeting mesothelin augments antitumor immunity and prolongs survival in murine models of ovarian cancer and mesothelioma. J Hematol Oncol 2014, 7:15. BioMed Central Full Text
  • [72]Chiang CL, Kandalaft LE, Tanyi J, Hagemann AR, Motz GT, Svoronos N, et al.: A dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: from bench to bedside. Clinical cancer research 2013, 19:4801-15.
  • [73]Sabbatini P, Tsuji T, Ferran L, Ritter E, Sedrak C, Tuballes K, et al.: Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clinical Cancer Research 2012, 18:6497-508.
  • [74]Leffers N, Lambeck AJ, Gooden MJ, Hoogeboom BN, Wolf R, Hamming IE, et al.: Immunization with a P53 synthetic long peptide vaccine induces P53-specific immune responses in ovarian cancer patients, a phase II trial. Int J Cancer 2009, 125:2104-13.
  • [75]Chianese-Bullock KA, Irvin WP Jr, Petroni GR, Murphy C, Smolkin M, Olson WC, et al.: A multipeptide vaccine is safe and elicits T-cell responses in participants with advanced stage ovarian cancer. J Immunother 2008, 31:420-30.
  • [76]Reinartz S, Köhler S, Schlebusch H, Krista K, Giffels P, Renke K, et al.: Vaccination of patients with advanced ovarian carcinoma with the anti-idiotype ACA125: immunological response and survival (phase Ib/II). Clinical Cancer Research 2004, 10:1580-7.
  • [77]Larocca C, Schlom J: Viral vector-based therapeutic cancer vaccines. Cancer J 2011, 17:359-71.
  • [78]Odunsi K, Jungbluth AA, Stockert E, Qian F, Gnjatic S, Tammela J, et al.: NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer. Cancer Research 2003, 63:6076-83.
  • [79]Jäger E, Karbach J, Gnjatic S, Neumann A, Bender A, Valmori D, et al.: Recombinant vaccinia/fowlpox NY-ESO-1 vaccines induce both humoral and cellular NY-ESO-1-specific immune responses in cancer patients. Proc Natl Acad Sci 2006, 103:14453-8.
  • [80]Valmori D, Souleimanian NE, Tosello V, Bhardwaj N, Adams S, O’Neill D, et al.: Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming. Proc Natl Acad Sci 2007, 104:8947-52.
  • [81]Odunsi K, Matsuzaki J, Karbach J, Neumann A, Mhawech-Fauceglia P, Miller A, et al.: Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients. Proc Natl Acad Sci 2012, 109:5797-802.
  • [82]Madan RA, Arlen PM, Gulley JL: PANVAC-VF: poxviral-based vaccine therapy targeting CEA and MUC1 in carcinoma. Expert Opin Biol Ther 2007, 7:543-54.
  • [83]Mohebtash M, Tsang KY, Madan RA, Huen NY, Poole DJ, Jochems C, et al.: A pilot study of MUC-1/CEA/TRICOM poxviral-based vaccine in patients with metastatic breast and ovarian cancer. Clinical Cancer Research 2011, 17:7164-73.
  • [84]Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, et al.: Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. NEJM 1988, 319:1676-80.
  • [85]Aoki Y, Takakuwa K, Kodama S, Tanaka K, Takahashi M, Tokunaga A, et al.: Use of adoptive transfer of tumor-infiltrating lymphocytes alone or in combination with cisplatin-containing chemotherapy in patients with epithelial ovarian cancer. Cancer research 1991, 51:1934-9.
  • [86]Fujita K, Ikarashi H, Takakuwa K, Kodama S, Tokunaga A, Takahashi T, et al.: Prolonged disease-free period in patients with advanced epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytes. Clin Cancer Res 1995, 1:501-7.
  • [87]Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al.: Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006, 314:126-9.
  • [88]Barber A, Zhang T, Sentman CL: Immunotherapy with chimeric NKG2D receptors leads to long-term tumor-free survival and development of host antitumor immunity in murine ovarian cancer. Journal of immunology 2008, 180:72-8.
  • [89]Spear P, Barber A, Sentman CL: Collaboration of chimeric antigen receptor (CAR)-expressing T cells and host T cells for optimal elimination of established ovarian tumors. Oncoimmunology 2013, 2:e23564.
  • [90]Kandalaft LE, Powell DJ, Coukos G: A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer. Journal of translational medicine 2012, 10:157. BioMed Central Full Text
  • [91]Drake CG: Combination immunotherapy approaches. Annals of Oncology 2012, 23:viii41-6.
  • [92]Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD: Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunology 2002, 3:991-8.
  • [93]Spranger S, Gajewski T: Rational combinations of immunotherapeutics that target discrete pathways. JITC 2013, 1:16.
  • [94]Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G: Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Research 2013, 73:3591-603.
  • [95]Hodi FS, Butler M, Oble DA, Seiden MV, Haluska FG, Kruse A, et al.: Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci 2008, 105:3005-10.
  • [96]Kandalaft LE, Powell DJ Jr, Chiang CL, Tanyi J, Kim S, Bosch M, et al.: Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo co-stimulated T cells in recurrent ovarian cancer. Oncoimmunology 2013, 2:e22664.
  文献评价指标  
  下载次数:0次 浏览次数:6次