期刊论文详细信息
Diagnostic Pathology
Persistence of chloroquine-resistant haplotypes of Plasmodium falciparum in children with uncomplicated Malaria in Lagos, Nigeria, four years after change of chloroquine as first-line antimalarial medicine
Colin J Sutherland1  Oyibo A Wellington2  Oladosu O Oladipo2 
[1] Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK;ANDI Centre of Excellence for Malaria Diagnosis/WHO-FIND Malaria Specimen Collection Site, College of Medicine, University of Lagos, P.M.B 12003, Idiaraba, Lagos, Nigeria
关键词: Artemesinin combination therapies (ACTs);    Chloroquine-resistant Plasmodium falciparum;    Haplotypes;    Mutations;    Pfmdr1;    Pfcrt;    Chloroquine;   
Others  :  1214038
DOI  :  10.1186/s13000-015-0276-2
 received in 2014-09-11, accepted in 2015-04-16,  发布年份 2015
PDF
【 摘 要 】

Background

In Nigeria, despite the change in National malaria drug policy to artemisinin combination therapy (ACT) in 2005 due to widespread chloroquine resistance, chloroquine (CQ) is still widely used in the treatment of malaria because it is cheap, affordable and accessible. The use of ACT for the management of uncomplicated malaria is currently being promoted. The employment of genetic markers to track circulating chloroquine-resistant parasites are useful in elucidating likely poor efficacy of chloroquine, especially in settings where it is not recommended for the treatment of uncomplicated falciparum malaria. This study determined the prevalence of pfcrt haplotypes and point mutations in pfmdr1 genes four years after the change in antimalarial treatment policy from CQ to the ACTs in Lagos, a commercial city in South-West, Nigeria.

Methods

This was a cross sectional study on uncomplicated malaria in children less than 12 years that presented with fever and other symptoms suggestive of malaria. Parasite DNA was extracted from 119 patients out of 251 children who were positive for Plasmodium falciparum by microscopy and amplified. The occurrence of haplotypes was investigated in pfcrt gene using probe-based qPCR and single nucleotide polymorphisms in pfmdr1 gene using nested PCR.

Results

One hundred and nine (109) of the 119 children with P falciparum infection (91.6%) harbourd parasites with the mutant pfcrt haplotype (CVIET). Out of this, 4.2% comprised a mixture of genotypes encoding CVMNK and CVIET, while 4.2% had the wild type (CVMNK). Furthermore, the frequency of point mutations in pfmdr1 was 62.2% and 69.0% for codons Y86 and F184 respectively. There were no mutations at codons 1034, 1042 and 1246 of the Pfmdr1 genes.

Conclusion

The high frequency of the CQ-resistant haplotypes (CVIET) and mutations in Pfmdr1 associated with CQ resistance in P. falciparum among these children suggest that CQ-resistant parasites are still in circulation. Continuous use of chloroquine may continue to increase the level of mutations in pfcrt and pfmdr1genes. There is need to strengthen current case management efforts atpromoting ACT use as well as urgently restricting access to chloroquine by the National drug regulatory agency, National Agency for Food Drug Administration and Control (NAFDAC).

Virtual Slides

The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2069472010142303 webcite

【 授权许可】

   
2015 Oladosu et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150624031841241.pdf 400KB PDF download
【 参考文献 】
  • [1]Talisuna AO, Nalunkuma-Kazibwe A, Langi P, Mutabingwa TK, Watkins WW, Van Marck E et al.. Two mutations in dihydrofolatereductase combined with one in the dihydropteroate synthase gene predict sulphadoxine-pyrimethamine parasitological failure in Ugandan children with uncomplicated falciparum malaria. Infect Genet Evol. 2004; 4:321-7.
  • [2]Guidelines for the treatment of malaria. 2nd ed. World Health Organization, Geneva; 2010.
  • [3]Antimalarial drug combination therapy: report of a WHO technical consultation. World Health Organization, Geneva, Switzerland; 2001.
  • [4]Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT et al.. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell. 2000; 6:861-71.
  • [5]Chen N, Kyle DE, Pasay C, Fowler EV, Baker J, Peters JM et al.. Pfcrt allelic types with two novel amino acid mutations in chloroquine-resistant Plasmodium falciparum isolates from the Philippines. Antimicrob Agents Chemother. 2003; 47:3500-5.
  • [6]Djimde AA, Doumbo OK, Traore O, Guindo AB, Kayentao K, Diourte Y et al.. Clearance of drug-resistant parasites as a model for protective immunity in Plasmodium falciparum malaria. Am J Trop Med Hyg. 2003; 69:558-63.
  • [7]Ursing J, Kofoed PE, Rodrigues A, Rombo L, Gil JP. Plasmodium falciparum genotypes associated with chloroquine and amodiaquine resistance in Guinea-Bissau. Am J Trop Med Hyg. 2007; 76:844-8.
  • [8]Foote SJ, Thompson JK, Cowman AF, Kemp DJ. Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum. Cell. 1999; 57:921-30.
  • [9]Hayward R, Saliba KJ, Kirk K. Mutations in pfmdr1 modulate the sensitivity of Plasmodium falciparum to the intrinsic antiplasmodial activity of verapamil. Antimicrob Agents Chemother. 2005; 49:840-2.
  • [10]Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y et al.. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med. 2001; 344:257-63.
  • [11]Sidhu AB, Verdier-Pinard D, Fidock DA. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by Pfcrtmutations. Science. 2002; 298:210-3.
  • [12]Cheruiyot J, Ingasia LA, Omondi AA, Juma DW, Opot BH, Ndegwa JM et al.. Polymorphisms in Pfmdr1, Pfcrt, and Pfnhe1 genes are associated with reduced In Vitro Activities of Quinine in Plasmodium falciparum Isolates from Western Kenya. Antimic Agents Chemo. 2014; 58 Suppl 7:3737-43.
  • [13]Duraisingh MT, Cowman AF. Contribution of the pfmdr1gene to antimalarial drug resistance. Acta Trop. 2005; 94:181-90.
  • [14]Khalil IF, Alifrangis M, Tarimo DS, Staalso T, Satti GM, Theander TG. The roles of the pfcrt 76 T and pfmdr1 86Y mutations, immunity and the initial level of parasitaemia, in predicting the outcome of chloroquine treatment in two areas with different transmission intensities. Ann Trop Med Parasitol. 2005; 99:441-8.
  • [15]Andriantsoanirina V, Ratsimbasoa A, Bouchier C, Jahevitra M, Rabearimanana S, Radrianjafy R et al.. Plasmodium falciparum drug resistance in Madagascar: facing the spread of unusual pfdhfr and pfmdr-1 haplotypes and the decrease of dihydroartemisinin susceptibility. Antimicrob Agents Chemother. 2009; 53 Suppl11:4588-97.
  • [16]Gadalla NB, Elzaki SE, Mukhtar E, Warhurst DC, El-Sayed B, Sutherland CJ. Dynamics of pfcrt alleles CVMNK and CVIET in chloroquine-treated Sudanese patients infected with Plasmodium falciparum. Malaria J. 2010; 9:74. BioMed Central Full Text
  • [17]Sutherland CJ, Haustein T, Gadalla N, Armstrong M, Doherty JF, Chiodini PL. Chloroquine resistant Plasmodium falciparum infections among UK travellers returning with malaria after chloroquine prophylaxis. J Ant Chem. 2007; 59:1197-9.
  • [18]Alifrangis M, Dalgaard MB, Lusingu JP, Vestergaard LS, Staalsoe T, Jensen AT et al.. Occurrence of the Southeast Asian/South American SVMNT haplotype of the chloroquine resistance transporter gene in Plasmodium falciparum in Tanzania. J Infect Dis. 2006; 193:1738-41.
  • [19]Ogungbamigbe T, Ogunro P, Elemile P, Egbewale B, Olowu O, Abiodun O. Presciption patterns of antimalarial drugs among medical practitioners in Osogbo Metropolis, South-West Nigeria. Trop Med Health. 2005; 33:201-8.
  • [20]Olukosi YA, Iwalokun BA, Magbagbeola EO, Akinwande O, Adewole TA, Agomo PU. Pattern of rural–urban aquisition of Pfcrt T76 allele among Nigerian children with uncomplicated Plasmodium falciparum malaria. Afr J Biotec. 2005; 4 Suppl 4:361-6.
  • [21]Happi CT, Gbotosho GO, Folarin OA, Bolaji OM, Sowunmi A, Kyle DE et al.. Association between mutations in plasmodium falciparum chloroquine resistance transporter and p. falciparum multidrug resistance 1 genes and in vivo amodiaquine resistance in p. falciparum malaria–infected children in Nigeria. Am J Trop Med Hyg. 2006; 75 Suppl 1:155-61.
  • [22]Ojurongbe O, Ogungbamigbe TO, Fagbenro-Beyioku AF, Fendel R, Kremsner PG, Kun JF. Rapid detection of Pfcrt and Pfmdr1 mutations in Plasmodium falciparum isolates by FRET and in vivo response to chloroquine among children from Osogbo, Nigeria. Malar J. 2007; 6:41. BioMed Central Full Text
  • [23]Laufer MK, Thesing PC, Eddington ND, Masonga R, Dzinjalamala FK, Takala SL et al.. Return of chloroquine antimalarial efficacy in Malawi. N Engl J Med. 2006; 355:1959-66.
  • [24]Mwai L, Ochong E, Abdirahman A, Kiara SM, Ward S, Kokwaro G et al.. Chloroquine resistance before and after its withdrawal in Kenya. Malaria J. 2009; 8:106. BioMed Central Full Text
  • [25]Nigerian muse Online: 7 February 2007. Available at: http://en.wikipedia.org/wiki/Lagos. Accessed 4 April 2013.
  • [26]Humphreys GA, Merinopoulos I, Ahmed J, Whitty CJM, Mutabingwa TK, Sutherland CJ et al.. Amodiaquine and artemether-lumefantrine select distinct alleles of the Plasmodium falciparum pfmdr1 gene in Tanzanian children treated for uncomplicated malaria. Antimicrob Agents Chemother. 2007; 51:991-7.
  • [27]Sutherland CJ, Fifer H, Pearce RJ, BinReza F, Nicholas M, Haustein T et al.. Novel pfdhpshaplotypes among imported cases of Plasmodium falciparum malaria in the UK. Antimicrob Agents Chemother. 2009; 53 Suppl 8:3405-10.
  • [28]Wilson PE, Kazadi W, Kamwendo DD, Mwapasa V, Purfield A, Meshinick SR. Prevalence of pfcrt mutations in Congolese and Malawian Plasmodium falciparum isolates as determined by a new Taqman assay. Acta Trop. 2005; 93:97-106.
  • [29]Bell J. A simple way to treat PCR products prior to sequencing using ExoSAP-IT. Biotechniques. 2008; 44:834.
  • [30]Pearce RJ, Drakeley C, Chandramohan D, Mosha F, Roper C. Molecular determination of point mutation haplotypes in the dihydrofolatereductase and dihydropteroate synthase of Plasmodium falciparum in three districts of northern Tanzania. Antimicrob Agents Chemother. 2003; 47:1347-54.
  • [31]Keen J, Farcas GA, Zhong K, Yohanna S, Dunne MW, Kain KC. Real-time PCR assay for rapid detection and analysis of PfCRT haplotypes of chloroquine resistant Plasmodium falciparum isolates from India. J Clin Microbiol. 2007; 45:2889-93.
  • [32]Dlamini SV, Beshir K, Sutherland CJ. Markers of anti-malarial drug resistance in Plasmodium falciparum isolates from Swaziland: identification of pfmdr1-86 F in natural parasite isolates. Malaria J. 2010; 9:68. BioMed Central Full Text
  • [33]Golassa L, Enweji N, Erko B, Aseffa A, Swedberg G. High prevalence of pfcrt-CVIET haplotype in isolates from asymptomatic and symptomatic patients in south-central Oromia, Ethiopia. Malar J. 2014; 13:120. BioMed Central Full Text
  • [34]Gama BE, Pereira de Carvalho GA, LutucutaKosi FJ, Almeida de Oliveira NK, Fortes F, Rosenthal PJ et al.. Plasmodium falciparum isolates from Angola show the StctVMNT haplotype in the pfcrt gene. Malar J. 2010; 9:174. BioMed Central Full Text
  • [35]Basco LK, Bras JL, Rhoades Z, Wilson CM. Analysis of pfmdr1 and drug susceptibility in fresh isolates of Plasmodium falciparum from Sub-Saharan Africa. Mol Biochem Parasitol. 1995; 74:157-66.
  • [36]von Seidlein L, Duraisingh MT, Drakeley CJ, Bailey R, Greenwood BM, Pinder M. Polymorphism of the pfmdr1 gene and chloroquine resistance in Plasmodium falciparum in the Gambia. Trans R Soc Trop Med Hyg. 1997; 91:450-3.
  • [37]Zakeri S, Afsharpad M, Kazemzadeh T, Mehdizadeh K, Shabani A, Djadid ND. Association of pfcrt but not pfmdr1 alleles with chloroquine resistance in Iranian isolates of Plasmodium falciparum. Am J Trop Med Hyg. 2008; 78:633-40.
  • [38]ElBadry ME, Existe A, Victor YS, Memnon G, Fukuda M, Dame JB et al.. Survey of Plasmodium falciparum multidrug resistance-1 and chloroquine resistance transporter alleles in Haiti. Malar J. 2013; 12:426. BioMed Central Full Text
  • [39]Nagesha HS, Din S, Casey GJ, Susanti AI, Fryauff DJ, Reeder JC et al.. Mutations in the pfmdr1, dhfrand dhps genes of Plasmodium falciparum are associated with in-vivo drug resistance in west Papua, Indonesia. Trans R Soc Trop Med Hyg. 2001; 95:43-9.
  • [40]Andriantsoanirina V, Ratsimbasoa A, Bouchier C, Tichit M, Jahevitra M, Rabearimanana S et al.. Chloroquine clinical failures in Plasmodium falciparum malaria are associated with mutant pfmdr-1, not pfcrt in Madagascar. PLoS One. 2010; 5: Article ID e13281
  • [41]Happi CT, Gbotosho GO, Folarin OA, Sowunmi A, Hudson T, O’Neil M et al.. Selection of Plasmodium falciparum multidrug resistance gene 1 alleles in asexual stages and gametocytes by artemether-lumefantrine in Nigerian children with uncomplicated falciparum malaria. Antimic Agents Chemoth. 2009; 53 Suppl 3:888-95.
  • [42]Duraisingh MI, Drakeley CI, Muller O, Bailey R, Snounou G, Targett GA et al.. Evidence for selection for the tyrosine 86 allele of pfmdr1 gene of Plasmodium falciparum by chloroquine and amodiaquine. Parasitology. 1997; 114:205-11.
  • [43]Holmgren G, Gil GP, Ferreira PM, Veiga MI, Obonyo CO, Bjorkman A. Amodiaquine resistant Plasmodium falciparum malaria invivo is associated with selection of Pfcrt76T and Pfmdr1 86Y. Infect Genet Evol. 2006; 6:309-14.
  • [44]Folarin OA, Gbotosho GO, Sowunmi A, Olorunsogo OO, Oduola AMJ, Happi TC. Chloroquine resistant Plasmodium falciparum in Nigeria: relationship between pfcrtand pfmdr1 polymorphisms, In-Vitro resistance and treatment outcome. Open Trop Med J. 2008; 1:74-82.
  • [45]Efunshile M, Runsewe-Abiodun T, Ghebremedhin B, Konig W, Konig B. Prevalence of the molecular marker of chloroquine resistance (pfcrt 76) in Nigeria 5 years after withdrawal of the drug as first-line antimalarial. A cross-sectional study. SAJCH. 2011; 5 Suppl 2:39-42.
  • [46]Yang Z, Zhang Z, Sun X, Wan W, Cui L, Zhang X et al.. Molecular analysis of chloroquine resistance in Plasmodium falciparumin Yunnan Province, China. Trop Med Intl Health. 2007; 12:1051-60.
  • [47]Fontecha GA, Sanchez AL, Mendoza M, Banegas E, Mejía-Torres RE. A four-year surveillance program for detection of Plasmodium falciparum chloroquine resistance in Honduras. MemInst Oswaldo Cruz. 2014; 109(4):492-9.
  • [48]Wang X, Um J, Li Q, Chen P, Guo X, Fu L et al.. Decreased prevalence of the Plasmodium falciparum chloroquine resistance transporter 76 T marker associated with cessation of choroquine use against P. falciparum malaria in Hainan, people’s Republic of China. Am J Trop Med Hyg. 2005; 72:410-4.
  • [49]Temu EA, Kimani I, Tuno N, Kawada H, Minjas JN, Takagi M. Monitoring chloroquine resistance using Plasmodium falciparum parasites isolated from wild mosquitoes in Tanzania. AmJ Trop Med Hyg. 2006; 75:1182-7.
  • [50]Kublin JG, Cortese JF, Njunju EM, Mukadam RA, Wirima JJ, Kazembe PN et al.. Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J Infect Dis. 2003; 187:1870-5.
  • [51]Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. Artemisinin Resistance in Cambodia 1 (ARC1) Study Consortium: evidence of artemisinin-resistant malaria in western Cambodia. N Eng J Med. 2008; 359:2619-20.
  • [52]Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J et al.. Artemisinin resistance in Plasmodium falciparum malaria. N Eng J Med. 2009; 361:455-67.
  文献评价指标  
  下载次数:2次 浏览次数:3次