期刊论文详细信息
Journal of Neuroinflammation
Differential expression of interferon-γ and chemokine genes distinguishes Rasmussen encephalitis from cortical dysplasia and provides evidence for an early Th1 immune response
Carol A Kruse4  Gary W Mathern4  Harry V Vinters5  Michelle J Hickey1  David L McArthur2  Julia W Chang2  My N Huynh2  Geoffrey C Owens3 
[1] Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA;Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA;UCLA Neurosurgery, Gonda Center, Room 1554, Box 951761, Los Angeles, CA, 90095, USA;Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA;Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
关键词: Chemokines;    T cells;    Gene expression;    Epilepsy;    Cortical dysplasia;    Rasmussen encephalitis;    Inflammation;   
Others  :  1159988
DOI  :  10.1186/1742-2094-10-56
 received in 2013-03-06, accepted in 2013-04-18,  发布年份 2013
PDF
【 摘 要 】

Background

Rasmussen encephalitis (RE) is a rare complex inflammatory disease, primarily seen in young children, that is characterized by severe partial seizures and brain atrophy. Surgery is currently the only effective treatment option. To identify genes specifically associated with the immunopathology in RE, RNA transcripts of genes involved in inflammation and autoimmunity were measured in brain tissue from RE surgeries and compared with those in surgical specimens of cortical dysplasia (CD), a major cause of intractable pediatric epilepsy.

Methods

Quantitative polymerase chain reactions measured the relative expression of 84 genes related to inflammation and autoimmunity in 12 RE specimens and in the reference group of 12 CD surgical specimens. Data were analyzed by consensus clustering using the entire dataset, and by pairwise comparison of gene expression levels between the RE and CD cohorts using the Harrell-Davis distribution-free quantile estimator method.

Results

Consensus clustering identified six RE cases that were clearly distinguished from the CD cases and from other RE cases. Pairwise comparison showed that seven mRNAs encoding interferon-γ, CCL5, CCL22, CCL23, CXCL9, CXCL10, and Fas ligand were higher in the RE specimens compared with the CD specimens, whereas the mRNA encoding hypoxanthine-guanine phosphoribosyltransferase was reduced. Interferon-γ, CXCL5, CXCL9 and CXCL10 mRNA levels negatively correlated with time from seizure onset to surgery (P <0.05), whereas CCL23 and Fas ligand transcript levels positively correlated with the degree of tissue destruction and inflammation, respectively (P <0.05), as determined from magnetic resonance imaging (MRI) T2 and FLAIR images. Accumulation of CD4+ lymphocytes in leptomeninges and perivascular spaces was a prominent feature in RE specimens resected within a year of seizure onset.

Conclusions

Active disease is characterized by a Th1 immune response that appears to involve both CD8+ and CD4+ T cells. Our findings suggest therapeutic intervention targeting specific chemokine/chemokine receptors may be useful in early stage RE.

【 授权许可】

   
2013 Owens et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150410091047296.pdf 2525KB PDF download
Figure 7. 158KB Image download
Figure 6. 26KB Image download
Figure 5. 68KB Image download
Figure 4. 22KB Image download
Figure 3. 103KB Image download
Figure 2. 131KB Image download
Figure 1. 109KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Rasmussen T, Olszewski J, Lloydsmith D: Focal seizures due to chronic localized encephalitis. Neurology 1958, 8:435-445.
  • [2]Oguni H, Andermann F, Rasmussen TB: The syndrome of chronic encephalitis and epilepsy. A study based on the MNI series of 48 cases. Adv Neurol 1992, 57:419-433.
  • [3]Farrell MA, Droogan O, Secor DL, Poukens V, Quinn B, Vinters HV: Chronic encephalitis associated with epilepsy: immunohistochemical and ultrastructural studies. Acta Neuropathol 1995, 89:313-321.
  • [4]Vining EP, Freeman JM, Brandt J, Carson BS, Uematsu S: Progressive unilateral encephalopathy of childhood (Rasmussen’s syndrome): a reappraisal. Epilepsia 1993, 34:639-650.
  • [5]Bien CG, Elger CE, Leitner Y, Gomori M, Ran B, Urbach H, Wilken B, Korn-Lubetzki I: Slowly progressive hemiparesis in childhood as a consequence of Rasmussen encephalitis without or with delayed-onset seizures. Eur J Neurol 2007, 14:387-390.
  • [6]Bien CG, Bauer J, Deckwerth TL, Wiendl H, Deckert M, Wiestler OD, Schramm J, Elger CE, Lassmann H: Destruction of neurons by cytotoxic T cells: a new pathogenic mechanism in Rasmussen’s encephalitis. Ann Neurol 2002, 51:311-318.
  • [7]Prayson RA, Frater JL: Rasmussen encephalitis: a clinicopathologic and immunohistochemical study of seven patients. Am J Clin Pathol 2002, 117:776-782.
  • [8]Pardo CA, Vining EP, Guo L, Skolasky RL, Carson BS, Freeman JM: The pathology of Rasmussen syndrome: stages of cortical involvement and neuropathological studies in 45 hemispherectomies. Epilepsia 2004, 45:516-526.
  • [9]Bauer J, Elger CE, Hans VH, Schramm J, Urbach H, Lassmann H, Bien CG: Astrocytes are a specific immunological target in Rasmussen’s encephalitis. Ann Neurol 2007, 62:67-80.
  • [10]Rogers SW, Andrews PI, Gahring LC, Whisenand T, Cauley K, Crain B, Hughes TE, Heinemann SF, McNamara JO: Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis. Science 1994, 265:648-651.
  • [11]Wiendl H, Bien CG, Bernasconi P, Fleckenstein B, Elger CE, Dichgans J, Mantegazza R, Melms A: GluR3 antibodies: prevalence in focal epilepsy but no specificity for Rasmussen’s encephalitis. Neurology 2001, 57:1511-1514.
  • [12]Watson R, Jiang Y, Bermudez I, Houlihan L, Clover L, McKnight K, Cross JH, Hart IK, Roubertie A, Valmier J, Hart Y, Palace J, Beeson D, Vincent A, Lang B: Absence of antibodies to glutamate receptor type 3 (GluR3) in Rasmussen encephalitis. Neurology 2004, 63:43-50.
  • [13]Mantegazza R, Bernasconi P, Baggi F, Spreafico R, Ragona F, Antozzi C, Bernardi G, Granata T: Antibodies against GluR3 peptides are not specific for Rasmussen’s encephalitis but are also present in epilepsy patients with severe, early onset disease and intractable seizures. J Neuroimmunol 2002, 131:179-185.
  • [14]Watson R, Jepson JE, Bermudez I, Alexander S, Hart Y, McKnight K, Roubertie A, Fecto F, Valmier J, Sattelle DB, Beeson D, Vincent A, Lang B: Alpha7-acetylcholine receptor antibodies in two patients with Rasmussen encephalitis. Neurology 2005, 65:1802-1804.
  • [15]Alvarez-Baron E, Bien CG, Schramm J, Elger CE, Becker AJ, Schoch S: Autoantibodies to Munc18, cerebral plasma cells and B-lymphocytes in Rasmussen encephalitis. Epilepsy Res 2008, 80:93-97.
  • [16]Takahashi Y, Mori H, Mishina M, Watanabe M, Kondo N, Shimomura J, Kubota Y, Matsuda K, Fukushima K, Shiroma N, Akasaka N, Nishida H, Imamura A, Watanabe H, Sugiyama N, Ikezawa M, Fujiwara T: Autoantibodies and cell-mediated autoimmunity to NMDA-type GluRepsilon2 in patients with Rasmussen’s encephalitis and chronic progressive epilepsia partialis continua. Epilepsia 2005, 46(Suppl 5):152-158.
  • [17]Granata T, Cross H, Theodore W, Avanzini G: Immune-mediated epilepsies. Epilepsia 52(Suppl 3):5-11.
  • [18]Walter GF, Renella RR: Epstein-Barr virus in brain and Rasmussen’s encephalitis. Lancet 1989, 1:279-280.
  • [19]Power C, Poland SD, Blume WT, Girvin JP, Rice GP: Cytomegalovirus and Rasmussen’s encephalitis. Lancet 1990, 336:1282-1284.
  • [20]Vinters HV, Wang R, Wiley CA: Herpesviruses in chronic encephalitis associated with intractable childhood epilepsy. Hum Pathol 1993, 24:871-879.
  • [21]Atkins MR, Terrell W, Hulette CM: Rasmussen’s syndrome: a study of potential viral etiology. Clin Neuropathol 1995, 14:7-12.
  • [22]Jay V, Becker LE, Otsubo H, Cortez M, Hwang P, Hoffman HJ, Zielenska M: Chronic encephalitis and epilepsy (Rasmussen’s encephalitis): detection of cytomegalovirus and herpes simplex virus 1 by the polymerase chain reaction and in situ hybridization. Neurology 1995, 45:108-117.
  • [23]Wirenfeldt M, Clare R, Tung S, Bottini A, Mathern GW, Vinters HV: Increased activation of Iba1+ microglia in pediatric epilepsy patients with Rasmussen’s encephalitis compared with cortical dysplasia and tuberous sclerosis complex. Neurobiol Dis 2009, 34:432-440.
  • [24]Iyer A, Zurolo E, Spliet WG, van Rijen PC, Baayen JC, Gorter JA, Aronica E: Evaluation of the innate and adaptive immunity in type I and type II focal cortical dysplasias. Epilepsia 2010, 51:1763-1773.
  • [25]Blumcke I, Thom M, Aronica E, Armstrong DD, Vinters HV, Palmini A, Jacques TS, Avanzini G, Barkovich AJ, Battaglia G, Becker A, Cepeda C, Cendes F, Colombo N, Crino P, Cross JH, Delalande O, Dubeau F, Duncan J, Guerrini R, Kahane P, Mathern G, Najm I, Ozkara C, Raybaud C, Represa A, Roper SN, Salamon N, Schulze-Bonhage A, Tassi L: The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia 2011, 52:158-174.
  • [26]Cepeda C, Hurst RS, Flores-Hernandez J, Hernandez-Echeagaray E, Klapstein GJ, Boylan MK, Calvert CR, Jocoy EL, Nguyen OK, Andre VM, Vinters HV, Ariano MA, Levine MS, Mathern GW: Morphological and electrophysiological characterization of abnormal cell types in pediatric cortical dysplasia. J Neurosci Res 2003, 72:472-486.
  • [27]Hemb M, Velasco TR, Parnes MS, Wu JY, Lerner JT, Matsumoto JH, Yudovin S, Shields WD, Sankar R, Salamon N, Vinters HV, Mathern GW: Improved outcomes in pediatric epilepsy surgery: the UCLA experience, 1986–2008. Neurology 2010, 74:1768-1775.
  • [28]Ramakers C, Ruijter JM, Deprez RH, Moorman AF: Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 2003, 339:62-66.
  • [29]Thomsen R, Solvsten CA, Linnet TE, Blechingberg J, Nielsen AL: Analysis of qPCR data by converting exponentially related Ct values into linearly related X0 values. J Bioinformatics Computational Biol 2010, 8:885-900.
  • [30]Andersen CL, Jensen JL, Orntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004, 64:5245-5250.
  • [31]Monti S, Tamayo P, Mesriov J, Golub T: Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach Learn 2003, 52:91-118.
  • [32]Brunet JP, Tamayo P, Golub TR, Mesirov JP: Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci USA 2004, 101:4164-4169.
  • [33]Harrell FE, Davis CE: A new distribution-free quantile estimator. Biometrika 1982, 69:635-640.
  • [34]Wilcox RR: Introduction to Robust Estimation and Hypothesis Testing. 3rd edition. San Diego, CA: Academic; 2012.
  • [35]Bien CG, Urbach H, Deckert M, Schramm J, Wiestler OD, Lassmann H, Elger CE: Diagnosis and staging of Rasmussen’s encephalitis by serial MRI and histopathology. Neurology 2002, 58:250-257.
  • [36]Burnstock G, Krugel U, Abbracchio MP, Illes P: Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 2011, 95:229-274.
  • [37]Zhu J, Yamane H, Paul WE: Differentiation of effector CD4 T cell populations. Annu Rev Immunol 2010, 28:445-489.
  • [38]Schoenborn JR, Wilson CB: Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 2007, 96:41-101.
  • [39]Bevan MJ: Helping the CD8(+) T-cell response. Nature Rev Immunol 2004, 4:595-602.
  • [40]Rocha B, Tanchot C: Towards a cellular definition of CD8+ T-cell memory: the role of CD4+ T-cell help in CD8+ T-cell responses. Curr Opinion Immunol 2004, 16:259-263.
  • [41]Siffrin V, Brandt AU, Radbruch H, Herz J, Boldakowa N, Leuenberger T, Werr J, Hahner A, Schulze-Topphoff U, Nitsch R, Zipp F: Differential immune cell dynamics in the CNS cause CD4+ T cell compartmentalization. Brain 2009, 132:1247-1258.
  • [42]Caccamo N, Todaro M, Sireci G, Meraviglia S, Stassi G, Dieli F: Mechanisms underlying lineage commitment and plasticity of human gammadelta T cells. Cell Mol Immunol 2013, 10:30-34.
  • [43]Chevalier G, Suberbielle E, Monnet C, Duplan V, Martin-Blondel G, Farrugia F, Le Masson G, Liblau R, Gonzalez-Dunia D: Neurons are MHC class I-dependent targets for CD8 T cells upon neurotropic viral infection. PLoS Pathog 2011, 7:e1002393.
  • [44]Muller M, Fontana A, Zbinden G, Gahwiler BH: Effects of interferons and hydrogen peroxide on CA3 pyramidal cells in rat hippocampal slice cultures. Brain Res 1993, 619:157-162.
  • [45]Muller M, Carter S, Hofer MJ, Campbell IL: Review: The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity–a tale of conflict and conundrum. Neuropathol Appl Neurobiol 2010, 36:368-387.
  • [46]Kim MO, Suh HS, Brosnan CF, Lee SC: Regulation of RANTES/CCL5 expression in human astrocytes by interleukin-1 and interferon-beta. J Neurochem 2004, 90:297-308.
  • [47]Prendergast CT, Anderton SM: Immune cell entry to central nervous system–current understanding and prospective therapeutic targets. Endocr Metab Immune Disord Drug Targets 2009, 9:315-327.
  • [48]Groom JR, Luster AD: CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biology 2011, 89:207-215.
  • [49]Trebst C, Staugaitis SM, Tucky B, Wei T, Suzuki K, Aldape KD, Pardo CA, Troncoso J, Lassmann H, Ransohoff RM: Chemokine receptors on infiltrating leucocytes in inflammatory pathologies of the central nervous system (CNS). Neuropathol Appl Neurobiol 2003, 29:584-595.
  • [50]Baranzini SE, Laxer K, Bollen A, Oksenberg JR: Gene expression analysis reveals altered brain transcription of glutamate receptors and inflammatory genes in a patient with chronic focal (Rasmussen’s) encephalitis. J Neuroimmunol 2002, 128:9-15.
  • [51]Choi J, Nordli DR Jr, Alden TD, DiPatri A Jr, Laux L, Kelley K, Rosenow J, Schuele SU, Rajaram V, Koh S: Cellular injury and neuroinflammation in children with chronic intractable epilepsy. J Neuroinflammation 2009, 6:38. BioMed Central Full Text
  • [52]Takahashi Y, Mine J, Kubota Y, Yamazaki E, Fujiwara T: A substantial number of Rasmussen syndrome patients have increased IgG, CD4+ T cells, TNFalpha, and Granzyme B in CSF. Epilepsia 2009, 50:1419-1431.
  • [53]Medana IM, Gallimore A, Oxenius A, Martinic MM, Wekerle H, Neumann H: MHC class I-restricted killing of neurons by virus-specific CD8+ T lymphocytes is effected through the Fas/FasL, but not the perforin pathway. Eur J Immunol 2000, 30:3623-3633.
  • [54]Arnold R, Brenner D, Becker M, Frey CR, Krammer PH: How T lymphocytes switch between life and death. Eur J Immunol 2006, 36:1654-1658.
  • [55]Wang X, Haroon F, Karray S, Martina D, Schluter D: Astrocytic Fas ligand expression is required to induce T-cell apoptosis and recovery from experimental autoimmune encephalomyelitis. Eur J Immunol 2013, 43:115-124.
  • [56]Imai T, Nagira M, Takagi S, Kakizaki M, Nishimura M, Wang J, Gray PW, Matsushima K, Yoshie O: Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. International Immunol 1999, 11:81-88.
  • [57]Columba-Cabezas S, Serafini B, Ambrosini E, Sanchez M, Penna G, Adorini L, Aloisi F: Induction of macrophage-derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitis and cultured microglia: implications for disease regulation. J Neuroimmunol 2002, 130:10-21.
  • [58]Youn BS, Zhang SM, Broxmeyer HE, Cooper S, Antol K, Fraser M Jr, Kwon BS: Characterization of CKbeta8 and CKbeta8-1: two alternatively spliced forms of human beta-chemokine, chemoattractants for neutrophils, monocytes, and lymphocytes, and potent agonists at CC chemokine receptor 1. Blood 1998, 91:3118-3126.
  • [59]Terry RL, Getts DR, Deffrasnes C, van Vreden C, Campbell IL, King NJ: Inflammatory monocytes and the pathogenesis of viral encephalitis. J Neuroinflammation 2012, 9:270. BioMed Central Full Text
  • [60]Eubank TD, Galloway M, Montague CM, Waldman WJ, Marsh CB: M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes. J Immunol 2003, 171:2637-2643.
  • [61]Wagner AS, Yin NS, Tung S, Mathern GW, Vinters HV: Intimal thickening of meningeal arteries after serial corticectomies for Rasmussen encephalitis. Hum Pathol 2012, 43:1308-1313.
  • [62]Goverman J: Autoimmune T cell responses in the central nervous system. Nature Rev Immunol 2009, 9:393-407.
  • [63]Schall TJ, Proudfoot AE: Overcoming hurdles in developing successful drugs targeting chemokine receptors. Nature Rev Immunol 2011, 11:355-363.
  文献评价指标  
  下载次数:0次 浏览次数:10次