期刊论文详细信息
BMC Veterinary Research
Comparative analysis of microRNA profiles between adult Ascaris lumbricoides and Ascaris suum
Xing-Quan Zhu3  Jian-Ping Tao1  Lifei Peng2  Hui-Qun Song3  Samer Alasaad4  Min-Jun Xu3  Chang-Chun Shao3 
[1] College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China;Department of Parasitology & Clinical Parasitology, Guangdong Medical College, Zhanjiang, Guangdong Province 524023, PR China;State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China;Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio s/n 41092, Sevilla, Spain
关键词: Comparative analysis;    Ascaris suum;    Ascaris lumbricoides;    MicroRNA (miRNA);   
Others  :  1119210
DOI  :  10.1186/1746-6148-10-99
 received in 2014-02-03, accepted in 2014-04-17,  发布年份 2014
PDF
【 摘 要 】

Background

The parasitic nematodes Ascaris lumbricoides and A. suum are of great public health and economic significance, and the two taxa were proposed to represent a single species. miRNAs are known with functions of gene regulations at post-transcriptional level.

Results

We herein compared the miRNA profiles of A. lumbricoides and A. suum female adults by Solexa deep sequencing combined with bioinformatics analysis and stem-loop real-time PCR. Using the A. suum genome as the reference genome, we obtained 171 and 494 miRNA candidates from A. lumbricoides and A. suum, respectively. Among which, 74 miRNAs were shared between the two taxa, 97 and 420 miRNAs were A. lumbricoides and A. suum specific. Target and function prediction revealed a significant set of targets which are related to ovarian message protein, vitellogenin and chondroitin proteoglycan of the two nematodes. Enrichment analysis revealed that the percentages of most predicted functions of the miRNA targets were similar, with some taxon specific or taxon enhanced functions, such as different target numbers, specific functions (NADH dehydrogenase and electron carrier functions), etc.

Conclusions

This study characterized comparatively the miRNAs of adult A. lumbricoides and A. suum, and the findings provide additional evidence that A. lumbricoides and A. suum represent a single species. Due to the fast evolution nature of miRNAs and the different parasitic living conditions of humans and pigs, the phenomenon above might indicate a fast evolution of miRNAs of Ascaris in humans and pigs.

【 授权许可】

   
2014 Shao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150208050907871.pdf 1005KB PDF download
Figure 3. 63KB Image download
Figure 2. 54KB Image download
Figure 1. 117KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Dold C, Holland CV: Ascaris and ascariasis. Microbes Infect 2011, 13:632-637.
  • [2]Crompton DW: Ascaris and ascariasis. Adv Parasitol 2001, 48:285-375.
  • [3]Hagel I, Giusti T: Ascaris lumbricoides: an overview of therapeutic targets. Infect Disord Drug Targets 2010, 10:349-367.
  • [4]Zhu X, Chilton NB, Jacobs DE, Boes J, Gasser RB: Characterisation of Ascaris from human and pig hosts by nuclear ribosomal DNA sequences. Int J Parasitol 1999, 29:469-478.
  • [5]Leles D, Gardner SL, Reinhard K, Iniguez A, Araujo A: Are Ascaris lumbricoides and Ascaris suum a single species? Parasit Vectors 2012, 5:42. BioMed Central Full Text
  • [6]Jex AR, Liu S, Li B, Young ND, Hall RS, Li Y, Yang L, Zeng N, Xu X, Xiong Z, Chen F, Wu X, Zhang G, Fang X, Kang Y, Anderson GA, Harris TW, Campbell BE, Vlaminck J, Wang T, Cantacessi C, Schwarz EM, Ranganathan S, Geldhof P, Nejsum P, Sternberg PW, Yang H, Wang J, Wang J, Gasser RB: Ascaris suum draft genome. Nature 2011, 479:529-533.
  • [7]Cantacessi C, Zou FC, Hall RS, Zhong W, Jex AR, Campbell BE, Ranganathan S, Sternberg PW, Zhu XQ, Gasser RB: Bioinformatic analysis of abundant, gender-enriched transcripts of adult Ascaris suum (Nematoda) using a semi-automated workflow platform. Mol Cell Probes 2009, 23:205-217.
  • [8]Huang CQ, Gasser RB, Cantacessi C, Nisbet AJ, Zhong W, Sternberg PW, Loukas A, Mulvenna J, Lin RQ, Chen N, Zhu XQ: Genomic-bioinformatic analysis of transcripts enriched in the third-stage larva of the parasitic nematode Ascaris suum. PLoS Negl Trop Dis 2008, 2:e246.
  • [9]Du T, Zamore PD: Beginning to understand microRNA function. Cell Res 2007, 17:661-663.
  • [10]Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP: Vertebrate microRNA genes. Science 2003, 299:1540.
  • [11]Wienholds E, Plasterk RH: MicroRNA function in animal development. FEBS Lett 2005, 579:5911-5922.
  • [12]Finnegan EF, Pasquinelli AE: MicroRNA biogenesis: regulating the regulators. Crit Rev Biochem Mol Biol 2013, 48:51-68.
  • [13]Liu Q, Tuo W, Gao H, Zhu XQ: MicroRNAs of parasites: current status and future perspectives. Parasitol Res 2010, 107:501-507.
  • [14]Lin WC, Li SC, Lin WC, Shin JW, Hu SN, Yu XM, Huang TY, Chen SC, Chen HC, Chen SJ, Huang PJ, Gan RR, Chiu CH, Tang P: Identification of microRNA in the protist Trichomonas vaginalis. Genomics 2009, 93:487-493.
  • [15]Wang CR, Xu MJ, Fu JH, Nisbet AJ, Chang QC, Zhou DH, Huang SY, Zou FC, Zhu XQ: Characterization of microRNAs from Orientobilharzia turkestanicum, a neglected blood fluke of human and animal health significance. PLoS ONE 2012, 7:e47001.
  • [16]Xu MJ, Ai L, Fu JH, Nisbet AJ, Liu QY, Chen MX, Zhou DH, Zhu XQ: Comparative characterization of microRNAs from the liver flukes Fasciola gigantica and F. hepatica. PLoS ONE 2012, 7:e53387.
  • [17]Xu MJ, Fu JH, Nisbet AJ, Huang SY, Zhou DH, Lin RQ, Song HQ, Zhu XQ: Comparative profiling of microRNAs in male and female adults of Ascaris suum. Parasitol Res 2013, 112:1189-1195.
  • [18]Xu MJ, Liu Q, Nisbet AJ, Cai XQ, Yan C, Lin RQ, Yuan ZG, Song HQ, He XH, Zhu XQ: Identification and characterization of microRNAs in Clonorchis sinensis of human health significance. BMC Genomics 2010, 11:521. BioMed Central Full Text
  • [19]Xu MJ, Wang CR, Huang SY, Fu JH, Zhou DH, Chang QC, Zheng X, Zhu XQ: Identification and characterization of microRNAs in the pancreatic fluke Eurytrema pancreaticum. Parasit Vectors 2013, 6:25. BioMed Central Full Text
  • [20]Hakimi MA, Cannella D: Apicomplexan parasites and subversion of the host cell microRNA pathway. Trends Parasitol 2011, 27:481-486.
  • [21]Zhao GH, Xu MJ, Zhu XQ: Identification and characterization of microRNAs in Baylisascaris schroederi of the giant panda. Parasit Vectors 2013, 6:216. BioMed Central Full Text
  • [22]Wang J, Liu X, Jia B, Lu H, Peng S, Piao X, Hou N, Cai P, Yin J, Jiang N, Chen Q: A comparative study of small RNAs in Toxoplasma gondii of distinct genotypes. Parasit Vectors 2012, 5:186. BioMed Central Full Text
  • [23]TenOever BR: RNA viruses and the host microRNA machinery. Nat Rev Microbiol 2013, 11:169-180.
  • [24]Zhai H, Fesler A, Ju J: MicroRNA: a third dimension in autophagy. Cell Cycle 2013, 12:246-250.
  • [25]Marshall ES, Elshekiha HM, Hakimi MA, Flynn RJ: Toxoplasma gondii peroxiredoxin promotes altered macrophage function, caspase-1-dependent IL-1beta secretion enhances parasite replication. Vet Res 2011, 42:80. BioMed Central Full Text
  • [26]Fu Y, Lan J, Wu X, Yang D, Zhang Z, Nie H, Hou R, Zhang R, Zheng W, Xie Y, Yan N, Yang Z, Wang C, Luo L, Liu L, Gu X, Wang S, Peng X, Yang G: Identification of Dirofilaria immitis miRNA using Illumina deep sequencing. Vet Res 2013, 44:3. BioMed Central Full Text
  • [27]Søkilde R, Vincent M, Møller AK, Hansen A, Høiby PE, Blondal T, Nielsen BS, Daugaard G, Møller S, Litman T: Efficient identification of miRNAs for classification of tumor origin. J Mol Diagn 2014, 16:106-115.
  • [28]Endo K, Weng H, Naito Y, Sasaoka T, Takahashi A, Fukushima Y, Iwai N: Classification of various muscular tissues using miRNA profiling. Biomed Res 2013, 34:289-299.
  • [29]Zhu C, Ren C, Han J, Ding Y, Du J, Dai N, Dai J, Ma H, Hu Z, Shen H, Xu Y, Jin G: A five-microRNA panel in plasma was identified as potential biomarker for early detection of gastric cancer. Br J Cancer 2014. doi:10.1038/bjc.2014.119
  • [30]Xu MJ, Zhou DH, Huang SY, Zhao FR, Nisbet AJ, Lin RQ, Song HQ, Zhu XQ: Comparative characterization of microRNA profiles of different genotypes of Toxoplasma gondii. Parasitology 2013, 140:1111-1118.
  • [31]Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J: SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009, 25:1966-1967.
  • [32]Mount DW: Using the Basic Local Alignment Search Tool (BLAST). CSH Protoc 2007, 2007:p17.
  • [33]Kruger J, Rehmsmeier M: RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 2006, 34:W451-W454.
  • [34]Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ: Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005, 33:e179.
  • [35]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25:402-408.
  • [36]Wei Y, Chen S, Yang P, Ma Z, Kang L: Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust. Genome Biol 2009, 10:R6. BioMed Central Full Text
  文献评价指标  
  下载次数:0次 浏览次数:4次