| Clinical Epigenetics | |
| On the epigenetics of vascular regulation and disease | |
| Ulrich Mahlknecht2  Indra Navina Dahmke2  Susanne Voelter-Mahlknecht1  Christina Schleithoff2  | |
| [1] Institute of Occupational and Social Medicine and Health Services Research, University of Tuebingen, Wilhelmstrasse 27, D-72074, Tuebingen, Germany;Saarland University Medical Center, Department of Internal Medicine, Division of Immunotherapy and Gene Therapy, Homburg, Saar, D-66421, Germany | |
| 关键词: HDAC; Histone deacetylase; Sirtuins; Vascular regulation; Cardiovascular disease; Epigenetics; | |
| Others : 791432 DOI : 10.1186/1868-7083-4-7 |
|
| received in 2012-01-03, accepted in 2012-03-09, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Consolidated knowledge is accumulating as to the role of epigenetic regulatory mechanisms in the physiology of vascular development and vascular tone as well as in the pathogenesis of cardiovascular disease. The modulation of gene expression through modification of the epigenome by structural changes of the chromatin architecture without alterations of the associated genomic DNA sequence is part of the cellular response to environmental changes. Such environmental conditions, which are finally being translated into adaptations of the cardiovascular system, also comprise pathological conditions such as atherosclerosis or myocardial infarction. This review summarizes recent findings on the epigenetics of vascular regulation and disease and presents nutritional and pharmacological approaches as novel epigenetic strategies in the prevention and treatment of cardiovascular disease.
【 授权许可】
2012 Schleithoff et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140705013448713.pdf | 1295KB | ||
| Figure 2 . | 38KB | Image | |
| Figure 1 . | 62KB | Image |
【 图 表 】
Figure 1 .
Figure 2 .
【 参考文献 】
- [1]Matouk CC, Marsden PA: Epigenetic regulation of vascular endothelial gene expression. Circ Res 2008, 102(8):873-87.
- [2]Yan MS, Matouk CC, Marsden PA: Epigenetics of the vascular endothelium. J Appl Physiol 2010, 109(3):916-26.
- [3]Pons D, et al.: Epigenetic histone acetylation modifiers in vascular remodelling: new targets for therapy in cardiovascular disease. Eur Heart J 2009, 30(3):266-77.
- [4]Krause B, Sobrevia L, Casanello P: Epigenetics: new concepts of old phenomena in vascular physiology. Curr Vasc Pharmacol 2009, 7(4):513-20.
- [5]Waddington CH: The epigenotype. Endeavour 1942, 1:18-20.
- [6]Goldberg AD, Allis CD, Bernstein E: Epigenetics: a landscape takes shape. Cell 2007, 128(4):635-8.
- [7]Taby R, Issa JP: Cancer epigenetics. CA Cancer J Clin 2010, 60(6):376-92.
- [8]Krishna SM, et al.: Genetic and epigenetic mechanisms and their possible role in abdominal aortic aneurysm. Atherosclerosis 2010, 212(1):16-29.
- [9]Trojer P, Reinberg D: Facultative heterochromatin: is there a distinctive molecular signature? Mol Cell 2007, 28(1):1-13.
- [10]Bernstein BE, Meissner A, Lander ES: The mammalian epigenome. Cell 2007, 128(4):669-81.
- [11]Miranda TB, Jones PA: DNA methylation: the nuts and bolts of repression. J Cell Physiol 2007, 213(2):384-90.
- [12]Cheng X, Blumenthal RM: Mammalian DNA methyltransferases: a structural perspective. Structure 2008, 16(3):341-50.
- [13]Schaefer M, et al.: RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev 2010, 24(15):1590-5.
- [14]Reik W: Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007, 447(7143):425-32.
- [15]Goll MG, Bestor TH: Eukaryotic cytosine methyltransferases. Annu Rev Biochem 2005, 74:481-514.
- [16]Wu H, Sun YE: Epigenetic regulation of stem cell differentiation. Pediatr Res 2006, 59(4 Pt 2):21R-5R.
- [17]Bell AC, Felsenfeld G: Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 2000, 405(6785):482-5.
- [18]Comb M, Goodman HM: CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res 1990, 18(13):3975-82.
- [19]Harrington MA, et al.: Cytosine methylation does not affect binding of transcription factor Sp1. Proc Natl Acad Sci U S A 1988, 85(7):2066-70.
- [20]Wenger RH, et al.: Oxygen-regulated erythropoietin gene expression is dependent on a CpG methylation-free hypoxia-inducible factor-1 DNA-binding site. Eur J Biochem 1998, 253(3):771-7.
- [21]Voo KS, et al.: Cloning of a mammalian transcriptional activator that binds unmethylated CpG motifs and shares a CXXC domain with DNA methyltransferase, human trithorax, and methyl-CpG binding domain protein 1. Mol Cell Biol 2000, 20(6):2108-21.
- [22]Wang GG, Allis CD, Chi P: Chromatin remodeling and cancer, Part II: ATP-dependent chromatin remodeling. Trends Mol Med 2007, 13(9):373-80.
- [23]Schones DE, et al.: Dynamic regulation of nucleosome positioning in the human genome. Cell 2008, 132(5):887-98.
- [24]Wang L, et al.: Histone acetyltransferase activity is conserved between yeast and human GCN5 and is required for complementation of growth and transcriptional activation. Mol Cell Biol 1997, 17(1):519-27.
- [25]Shahbazian MD, Grunstein M: Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 2007, 76:75-100.
- [26]Shogren-Knaak M, et al.: Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 2006, 311(5762):844-7.
- [27]Zschoernig B, Mahlknecht U: SIRTUIN 1: regulating the regulator. Biochem Biophys Res Commun 2008, 376(2):251-5.
- [28]Voelter-Mahlknecht S, Mahlknecht U: The sirtuins in the pathogenesis of cancer. Clinical Epigenetics 2010, 1(3–4):71-83.
- [29]Shi X, et al.: Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36. J Biol Chem 2007, 282(4):2450-5.
- [30]Chen W, Bacanamwo M, Harrison DG: Activation of p300 histone acetyltransferase activity is an early endothelial response to laminar shear stress and is essential for stimulation of endothelial nitric-oxide synthase mRNA transcription. J Biol Chem 2008, 283(24):16293-8.
- [31]Heintzman ND, et al.: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 2007, 39(3):311-8.
- [32]Barski A, et al.: High-resolution profiling of histone methylations in the human genome. Cell 2007, 129(4):823-37.
- [33]Zaratiegui M, Irvine DV, Martienssen RA: Noncoding RNAs and gene silencing. Cell 2007, 128(4):763-76.
- [34]Noma K, et al.: RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat Genet 2004, 36(11):1174-80.
- [35]Mercer TR, Dinger ME, Mattick JS: Long non-coding RNAs: insights into functions. Nat Rev Genet 2009, 10(3):155-9.
- [36]Khalil AM, et al.: Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 2009, 106(28):11667-72.
- [37]Morris KV: siRNA-mediated transcriptional gene silencing: the potential mechanism and a possible role in the histone code. Cell Mol Life Sci 2005, 62(24):3057-66.
- [38]Kaikkonen MU, Lam MT, Glass CK: Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 2011, 90(3):430-40.
- [39]Lee Y, et al.: The nuclear RNase III Drosha initiates microRNA processing. Nature 2003, 425(6956):415-9.
- [40]Denli AM, et al.: Processing of primary microRNAs by the Microprocessor complex. Nature 2004, 432(7014):231-5.
- [41]Bavan L, Midwood K, Nanchahal J: MicroRNA epigenetics: a new avenue for wound healing research. BioDrugs 2011, 25(1):27-41.
- [42]Morris KV, et al.: Small interfering RNA-induced transcriptional gene silencing in human cells. Science 2004, 305(5688):1289-92.
- [43]Ting AH, et al.: Short double-stranded RNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation. Nat Genet 2005, 37(8):906-10.
- [44]Risau W: Mechanisms of angiogenesis. Nature 1997, 386(6626):671-4.
- [45]Kubis N, Levy BI: Understanding angiogenesis: a clue for understanding vascular malformations. J Neuroradiol 2004, 31(5):365-8.
- [46]Hamik A, Wang B, Jain MK: Transcriptional regulators of angiogenesis. Arterioscler Thromb Vasc Biol 2006, 26(9):1936-47.
- [47]Guarani V, et al.: Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 2011, 473(7346):234-8.
- [48]Jones EA, le Noble F, Eichmann A: What determines blood vessel structure? Genetic prespecification vs. hemodynamics. Physiology (Bethesda) 2006, 21:388-95.
- [49]Hirashima M, Suda T: Differentiation of arterial and venous endothelial cells and vascular morphogenesis. Endothelium 2006, 13(2):137-45.
- [50]le Noble F, et al.: Neural guidance molecules, tip cells, and mechanical factors in vascular development. Cardiovasc Res 2008, 78(2):232-41.
- [51]McDonald OG, Owens GK: Programming smooth muscle plasticity with chromatin dynamics. Circ Res 2007, 100(10):1428-41.
- [52]Rossig L, et al.: Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. Circ Res 2002, 91(9):837-44.
- [53]Chan Y, et al.: The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation. J Biol Chem 2004, 279(33):35087-100.
- [54]Fish JE, et al.: The expression of endothelial nitric-oxide synthase is controlled by a cell-specific histone code. J Biol Chem 2005, 280(26):24824-38.
- [55]Fish JE, Marsden PA: Endothelial nitric oxide synthase: insight into cell-specific gene regulation in the vascular endothelium. Cell Mol Life Sci 2006, 63(2):144-62.
- [56]Kim MS, et al.: Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 2001, 7(4):437-43.
- [57]Zeng L, et al.: HDAC3 is crucial in shear- and VEGF-induced stem cell differentiation toward endothelial cells. J Cell Biol 2006, 174(7):1059-69.
- [58]Illi B, et al.: Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress. Circ Res 2005, 96(5):501-8.
- [59]Deroanne CF, et al.: Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene 2002, 21(3):427-36.
- [60]Chang S, et al.: Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 2006, 126(2):321-34.
- [61]Wang S, et al.: Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7. Proc Natl Acad Sci U S A 2008, 105(22):7738-43.
- [62]Xiao Q, et al.: Sca-1+ progenitors derived from embryonic stem cells differentiate into endothelial cells capable of vascular repair after arterial injury. Arterioscler Thromb Vasc Biol 2006, 26(10):2244-51.
- [63]Rossig L, et al.: Histone deacetylase activity is essential for the expression of HoxA9 and for endothelial commitment of progenitor cells. J Exp Med 2005, 201(11):1825-35.
- [64]Diehl F, et al.: The histone methyltransferase MLL is an upstream regulator of endothelial-cell sprout formation. Blood 2007, 109(4):1472-8.
- [65]Van Speybroeck L: From epigenesis to epigenetics: the case of C. H. Waddington. Ann N Y Acad Sci 2002, 981:61-81.
- [66]Jirtle RL, Skinner MK: Environmental epigenomics and disease susceptibility. Nat Rev Genet 2007, 8(4):253-62.
- [67]Escudero C, Sobrevia L: A hypothesis for preeclampsia: adenosine and inducible nitric oxide synthase in human placental microvascular endothelium. Placenta 2008, 29(6):469-83.
- [68]Casanello P, Escudero C, Sobrevia L: Equilibrative nucleoside (ENTs) and cationic amino acid (CATs) transporters: implications in foetal endothelial dysfunction in human pregnancy diseases. Curr Vasc Pharmacol 2007, 5(1):69-84.
- [69]Hellebrekers DM, Griffioen AW, van Engeland M: Dual targeting of epigenetic therapy in cancer. Biochim Biophys Acta 2007, 1775(1):76-91.
- [70]Kim YI, et al.: Folate deficiency in rats induces DNA strand breaks and hypomethylation within the p53 tumor suppressor gene. Am J Clin Nutr 1997, 65(1):46-52.
- [71]Mottet D, et al.: Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis. Circ Res 2007, 101(12):1237-46.
- [72]Potente M, et al.: SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev 2007, 21(20):2644-58.
- [73]Brunet A, et al.: Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004, 303(5666):2011-5.
- [74]Yamamoto K, et al.: Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am J Physiol Heart Circ Physiol 2005, 288(4):H1915-24.
- [75]Illi B, et al.: Shear stress-mediated chromatin remodeling provides molecular basis for flow-dependent regulation of gene expression. Circ Res 2003, 93(2):155-61.
- [76]Johnson AB, Denko N, Barton MC: Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutat Res 2008, 640(1–2):174-9.
- [77]Johnson AB, Barton MC: Hypoxia-induced and stress-specific changes in chromatin structure and function. Mutat Res 2007, 618(1–2):149-62.
- [78]Fish JE, et al.: Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones. J Biol Chem 2010, 285(2):810-26.
- [79]Wang Y, et al.: Regulation of endocytosis via the oxygen-sensing pathway. Nat Med 2009, 15(3):319-24.
- [80]Kato H, Tamamizu-Kato S, Shibasaki F: Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity. J Biol Chem 2004, 279(40):41966-74.
- [81]Monraats PS, et al.: Genetic inflammatory factors predict restenosis after percutaneous coronary interventions. Circulation 2005, 112(16):2417-25.
- [82]Libby P, Ridker PM, Maseri A: Inflammation and atherosclerosis. Circulation 2002, 105(9):1135-43.
- [83]Mertens G: Gene/Environment interaction in atherosclerosis: an example of clinical medicine as seen from the evolutionary perspective. Int J Hypertens 2010, 2010:654078.
- [84]Stenvinkel P, et al.: Impact of inflammation on epigenetic DNA methylation - a novel risk factor for cardiovascular disease? J Intern Med 2007, 261(5):488-99.
- [85]Galm O, et al.: SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood 2003, 101(7):2784-8.
- [86]Chiba T, et al.: A selective NFkappaB inhibitor, DHMEQ, reduced atherosclerosis in ApoE-deficient mice. J Atheroscler Thromb 2006, 13(6):308-13.
- [87]Ito K, et al.: Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem Biophys Res Commun 2004, 315(1):240-5.
- [88]Nie M, Knox AJ, Pang L: beta2-Adrenoceptor agonists, like glucocorticoids, repress eotaxin gene transcription by selective inhibition of histone H4 acetylation. J Immunol 2005, 175(1):478-86.
- [89]Haley KJ, et al.: Overexpression of eotaxin and the CCR3 receptor in human atherosclerosis: using genomic technology to identify a potential novel pathway of vascular inflammation. Circulation 2000, 102(18):2185-9.
- [90]Zhang XH, Ma XJ, Zhao T: Effects of granulocyte-macrophage colony stimulating factor on the repair of vessel intima damaged by balloon. Chin Med J (Engl) 2005, 118(3):220-5.
- [91]Tomita K, Barnes PJ, Adcock IM: The effect of oxidative stress on histone acetylation and IL-8 release. Biochem Biophys Res Commun 2003, 301(2):572-7.
- [92]Ito K, Barnes PJ, Adcock IM: Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol 2000, 20(18):6891-903.
- [93]Cosio BG, et al.: Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J Exp Med 2004, 200(5):689-95.
- [94]Granger A, et al.: Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J 2008, 22(10):3549-60.
- [95]McKinsey TA, Zhang CL, Olson EN: Signaling chromatin to make muscle. Curr Opin Cell Biol 2002, 14(6):763-72.
- [96]Zhang CL, et al.: Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 2002, 110(4):479-88.
- [97]Henderson EL, et al.: Death of smooth muscle cells and expression of mediators of apoptosis by T lymphocytes in human abdominal aortic aneurysms. Circulation 1999, 99(1):96-104.
- [98]Longo GM, et al.: Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest 2002, 110(5):625-32.
- [99]Sakalihasan N, et al.: Activated forms of MMP2 and MMP9 in abdominal aortic aneurysms. J Vasc Surg 1996, 24(1):127-33.
- [100]Kowalewski R, et al.: Evaluation of enzymes involved in proteoglycan degradation in the wall of abdominal aortic aneurysms. J Vasc Res 2006, 43(1):95-100.
- [101]Raynaud M, Barlow T: On local asphyxia and symmetrical gangrene of the extremities. London, The Sydenham Society; 1888.
- [102]Chang K, et al.: The Glu298Asp polymorphism in the endothelial nitric oxide synthase gene is strongly associated with coronary spasm. Coron Artery Dis 2003, 14(4):293-9.
- [103]Baek SJ, Lee KD, Shen RF: Genomic structure and polymorphism of the human thromboxane synthase-encoding gene. Gene 1996, 173(2):251-6.
- [104]Amano S, et al.: Polymorphism of the promoter region of prostacyclin synthase gene in chronic thromboembolic pulmonary hypertension. Respirology 2004, 9(2):184-9.
- [105]Vallance P, Collier J, Moncada S: Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 1989, 2(8670):997-1000.
- [106]Kennedy G, et al.: Endothelial activation and response in patients with hand arm vibration syndrome. Eur J Clin Invest 1999, 29(7):577-81.
- [107]Herrick AL: Pathogenesis of Raynaud’s phenomenon. Rheumatology (Oxford) 2005, 44(5):587-96.
- [108]Radomski MW, Palmer RM, Moncada S: The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 1987, 92(3):639-46.
- [109]Liapina M, Tzvetkov D, Vodenitcharov E: Pathophysiology of vibration-induced white fingers–current opinion: a review. Cent Eur J Public Health 2002, 10(1–2):16-20.
- [110]Cines DB, et al.: Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998, 91(10):3527-61.
- [111]Tai SC, Robb GB, Marsden PA: Endothelial nitric oxide synthase: a new paradigm for gene regulation in the injured blood vessel. Arterioscler Thromb Vasc Biol 2004, 24(3):405-12.
- [112]Laufs U, Liao JK: Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem 1998, 273(37):24266-71.
- [113]Bouloumie A, Schini-Kerth VB, Busse R: Vascular endothelial growth factor up-regulates nitric oxide synthase expression in endothelial cells. Cardiovasc Res 1999, 41(3):773-80.
- [114]Davis ME, et al.: Shear stress regulates endothelial nitric oxide synthase expression through c-Src by divergent signaling pathways. Circ Res 2001, 89(11):1073-80.
- [115]Yoshizumi M, et al.: Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res 1993, 73(1):205-9.
- [116]Liao JK, et al.: Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase. J Biol Chem 1995, 270(1):319-24.
- [117]Gryglewski RJ, Palmer RM, Moncada S: Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 1986, 320(6061):454-6.
- [118]Garg UC, Hassid A: Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989, 83(5):1774-7.
- [119]Beckman JS, et al.: Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 1990, 87(4):1620-4.
- [120]Rubbo H, Denicola A, Radi R: Peroxynitrite inactivates thiol-containing enzymes of Trypanosoma cruzi energetic metabolism and inhibits cell respiration. Arch Biochem Biophys 1994, 308(1):96-102.
- [121]Radi R, et al.: Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 1991, 266(7):4244-50.
- [122]Radi R, et al.: Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 1991, 288(2):481-7.
- [123]Munzel T, et al.: Role for NADPH/NADH oxidase in the modulation of vascular tone. Ann N Y Acad Sci 1999, 874:386-400.
- [124]Liu S, Beckman JS, Ku DD: Peroxynitrite, a product of superoxide and nitric oxide, produces coronary vasorelaxation in dogs. J Pharmacol Exp Ther 1994, 268(3):1114-21.
- [125]Forstermann U, Munzel T: Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 2006, 113(13):1708-14.
- [126]Ji R, et al.: MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 2007, 100(11):1579-88.
- [127]Liu X, et al.: MicroRNA-222 regulates cell invasion by targeting matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 (SOD2) in tongue squamous cell carcinoma cell lines. Cancer Genomics Proteomics 2009, 6(3):131-9.
- [128]Zernecke A, et al.: Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009, 100:ra81.
- [129]Harris TA, et al.: MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A 2008, 105(5):1516-21.
- [130]Menghini R, et al.: MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 2009, 120(15):1524-32.
- [131]Dimmeler S, Zeiher AM: Circulating microRNAs: novel biomarkers for cardiovascular diseases? Eur Heart J 2010, 31(22):2705-7.
- [132]Fichtlscherer S, et al.: Circulating microRNAs in patients with coronary artery disease. Circ Res 2010, 107(5):677-84.
- [133]Wang R, et al.: Circulating MicroRNAs are Promising Novel Biomarkers of Acute Myocardial Infarction. Intern Med 2011, 50(17):1789-95.
- [134]D’Alessandra Y, et al.: Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 2010, 31(22):2765-73.
- [135]Robb GB, et al.: Post-transcriptional regulation of endothelial nitric-oxide synthase by an overlapping antisense mRNA transcript. J Biol Chem 2004, 279(36):37982-96.
- [136]Fish JE, et al.: Hypoxia-inducible expression of a natural cis-antisense transcript inhibits endothelial nitric-oxide synthase. J Biol Chem 2007, 282(21):15652-66.
- [137]Thrash-Bingham CA, Tartof KD: aHIF-1 : a natural antisense transcript overexpressed in human renal cancer and during hypoxia. J Natl Cancer Inst 1999, 91(2):143-51.
- [138]Rossignol F, Vache C, Clottes E: Natural antisense transcripts of hypoxia-inducible factor 1alpha are detected in different normal and tumour human tissues. Gene 2002, 299(1–2):135-40.
- [139]McNulty H, et al.: Homocysteine, B-vitamins and CVD. Proc Nutr Soc 2008, 67(2):232-7.
- [140]Farley TA, et al.: Deaths preventable in the U.S. by improvements in use of clinical preventive services. Am J Prev Med 2010, 38(6):600-9.
- [141]Duthie SJ, et al.: Blood folate status and expression of proteins involved in immune function, inflammation, and coagulation: biochemical and proteomic changes in the plasma of humans in response to long-term synthetic folic acid supplementation. J Proteome Res 2010, 9(4):1941-50.
- [142]Duthie SJ: Epigenetic modifications and human pathologies: cancer and CVD. Proc Nutr Soc 2011, 70(1):47-56.
- [143]Das M, Das DK: Resveratrol and cardiovascular health. Mol Aspects Med 2010, 31(6):503-12.
- [144]Frankel EN, Waterhouse AL, Kinsella JE: Inhibition of human LDL oxidation by resveratrol. Lancet 1993, 341(8852):1103-4.
- [145]Wallerath T, et al.: Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation 2002, 106(13):1652-8.
- [146]Lagouge M, et al.: Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127(6):1109-22.
- [147]Zhang QJ, et al.: Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res 2008, 80(2):191-9.
- [148]Stein S, et al.: SIRT1 reduces endothelial activation without affecting vascular function in ApoE−/− mice. Aging (Albany NY) 2010, 2(6):353-60.
- [149]Ota H, et al.: Sirt1 modulates premature senescence-like phenotype in human endothelial cells. J Mol Cell Cardiol 2007, 43(5):571-9.
- [150]Mattagajasingh I, et al.: SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 2007, 104(37):14855-60.
- [151]Haigis MC, Sinclair DA: Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 2010, 5:253-95.
- [152]Suzuki H, et al.: DNA methylation and cancer pathways in gastrointestinal tumors. Pharmacogenomics 2008, 9(12):1917-28.
- [153]Lund G, et al.: DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem 2004, 279(28):29147-54.
- [154]Hiltunen MO, et al.: DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc Med 2002, 7(1):5-11.
- [155]Van Wagoner DR, Nattel S: Insights into mechanisms linking cardiac hypertrophy and atrial fibrosis: evidence for a role of histone deacetylase in atrial fibrillation pathophysiology and therapy. J Mol Cell Cardiol 2008, 45(6):707-8.
- [156]Pons D, Jukema JW: Epigenetic histone acetylation modifiers in vascular remodelling - new targets for therapy in cardiovascular disease. Neth Heart J 2008, 16(1):30-2.
- [157]Gallo P, et al.: Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure. Cardiovasc Res 2008, 80(3):416-24.
- [158]Vinh A, et al.: A novel histone deacetylase inhibitor reduces abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice. J Vasc Res 2008, 45(2):143-52.
PDF