期刊论文详细信息
Cancer Cell International
Analyzing the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays
Pan Jian2  Ni Jian2  Li Yan-Hong1  Feng Xing1  Wang Jian1  Wang Na1  Lu Jun1  Zhao Wen-Li1  Pang Li1  Wu Dong1  Tao Yan-Fang1 
[1] Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China;Translational Research Center, Second Hospital, The Second Clinical School, Nanjing Medical University, Nanjing, China
关键词: Real-time PCR array;    Acute myeloid leukemia;    Pediatric;   
Others  :  794756
DOI  :  10.1186/1475-2867-12-40
 received in 2012-08-16, accepted in 2012-09-06,  发布年份 2012
PDF
【 摘 要 】

Background

The Real-time PCR Array System is the ideal tool for analyzing the expression of a focused panel of genes. In this study, we will analyze the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays.

Methods

Real-time PCR array was designed and tested firstly. Then gene expression profile of 11 pediatric AML and 10 normal controls was analyzed with real-time PCR arrays. We analyzed the expression data with MEV (Multi Experiment View) cluster software. Datasets representing genes with altered expression profile derived from cluster analyses were imported into the Ingenuity Pathway Analysis Tool.

Results

We designed and tested 88 real-time PCR primer pairs for a quantitative gene expression analysis of key genes involved in pediatric AML. The gene expression profile of pediatric AML is significantly different from normal control; there are 19 genes up-regulated and 25 genes down-regulated in pediatric AML. To investigate possible biological interactions of differently regulated genes, datasets representing genes with altered expression profile were imported into the Ingenuity Pathway Analysis Tool. The results revealed 12 significant networks. Of these networks, Cellular Development, Cellular Growth and Proliferation, Tumor Morphology was the highest rated network with 36 focus molecules and the significance score of 41. The IPA analysis also groups the differentially expressed genes into biological mechanisms that are related to hematological disease, cell death, cell growth and hematological system development. In the top canonical pathways, p53 and Huntington’s disease signaling came out to be the top two most significant pathways with a p value of 1.5E-8 and2.95E-7, respectively.

Conclusions

The present study demonstrates the gene expression profile of pediatric AML is significantly different from normal control; there are 19 genes up-regulated and 25 genes down-regulated in pediatric AML. We found some genes dyes-regulated in pediatric AML for the first time as FASLG, HDAC4, HDAC7 and some HOX family genes. IPA analysis showed the top important pathways for pediatric AML are p53 and Huntington’s disease signaling. This work may provide new clues of molecular mechanism in pediatric AML.

【 授权许可】

   
2012 Yan-Fang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705072614131.pdf 2316KB PDF download
Figure 4. 855KB Image download
Figure 3. 104KB Image download
Figure 2. 93KB Image download
Figure 1. 820KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Estey E, Dohner H: Acute myeloid leukaemia. Lancet 2006, 368(9550):1894-1907.
  • [2]Foran JM: New prognostic markers in acute myeloid leukemia: perspective from the clinic. Hematology Am Soc Hematol Educ Program 2010, 1:47-55.
  • [3]Wang X, Gotoh O: Accurate molecular classification of cancer using simple rules. BMC Med Genomics 2009, 2:64. BioMed Central Full Text
  • [4]Haouas H, Haouas S, Uzan G, Hafsia A: Identification of new markers discriminating between myeloid and lymphoid acute leukemia. Hematology 2010, 15(4):193-203.
  • [5]Chun SM, Kim YL, Choi HB, Oh YT, Kim YJ, Lee S, Kim TG, Yang EG, Park YK, Kim DW, et al.: Identification of leukemia-specific fusion gene transcripts with a novel oligonucleotide array. Mol Diagn Ther 2007, 11(1):21-28.
  • [6]Steinbach D, Schramm A, Eggert A, Onda M, Dawczynski K, Rump A, Pastan I, Wittig S, Pfaffendorf N, Voigt A, et al.: Identification of a set of seven genes for the monitoring of minimal residual disease in pediatric acute myeloid leukemia. Clin Cancer Res 2006, 12(8):2434-2441.
  • [7]Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270(5235):467-470.
  • [8]Bresolin S, Zecca M, Flotho C, Trentin L, Zangrando A, Sainati L, Stary J, de Moerloose B, Hasle H, Niemeyer CM, et al.: Gene expression-based classification as an independent predictor of clinical outcome in juvenile myelomonocytic leukemia. J Clin Oncol 2010, 28(11):1919-1927.
  • [9]de Jonge HJ, Huls G, de Bont ES: Gene expression profiling in acute myeloid leukaemia. Neth J Med 2011, 69(4):167-176.
  • [10]Kolquist KA, Schultz RA, Furrow A, Brown TC, Han JY, Campbell LJ, Wall M, Slovak ML, Shaffer LG, Ballif BC: Microarray-based comparative genomic hybridization of cancer targets reveals novel, recurrent genetic aberrations in the myelodysplastic syndromes. Cancer Genet 2011, 204(11):603-628.
  • [11]Gershon D: Microarray technology: an array of opportunities. Nature 2002, 416(6883):885-891.
  • [12]Majtan T, Bukovska G, Timko J: DNA microarrays–techniques and applications in microbial systems. Folia Microbiol (Praha) 2004, 49(6):635-664.
  • [13]Whetten R, Sun YH, Zhang Y, Sederoff R: Functional genomics and cell wall biosynthesis in loblolly pine. Plant Mol Biol 2001, 47(1–2):275-291.
  • [14]Huang JX, Mehrens D, Wiese R, Lee S, Tam SW, Daniel S, Gilmore J, Shi M, Lashkari D: High-throughput genomic and proteomic analysis using microarray technology. Clin Chem 2001, 47(10):1912-1916.
  • [15]Pusztai L, Hess KR: Clinical trial design for microarray predictive marker discovery and assessment. Ann Oncol 2004, 15(12):1731-1737.
  • [16]Simon R, Radmacher MD, Dobbin K: Design of studies using DNA microarrays. Genet Epidemiol 2002, 23(1):21-36.
  • [17]Stoeck T, Hayward B, Taylor GT, Varela R, Epstein SS: A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist 2006, 157(1):31-43.
  • [18]Vinuela A, Snoek LB, Riksen JA, Kammenga JE: Genome-wide gene expression analysis in response to organophosphorus pesticide chlorpyrifos and diazinon in C. elegans. PLoS One 5(8):e12145.
  • [19]Arikawa E, Sun Y, Wang J, Zhou Q, Ning B, Dial SL, Guo L, Yang J: Cross-platform comparison of SYBR Green real-time PCR with TaqMan PCR, microarrays and other gene expression measurement technologies evaluated in the MicroArray Quality Control (MAQC) study. BMC Genomics 2008, 9:328. BioMed Central Full Text
  • [20]Geets J, de Cooman M, Wittebolle L, Heylen K, Vanparys B, De Vos P, Verstraete W, Boon N: Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Appl Microbiol Biotechnol 2007, 75(1):211-221.
  • [21]Ramalingam N, Liu HB, Dai CC, Jiang Y, Wang H, Wang Q, MH K, Gong HQ: Real-time PCR array chip with capillary-driven sample loading and reactor sealing for point-of-care applications. Biomed Microdevices 2009, 11(5):1007-1020.
  • [22]Schmittgen TD, Lee EJ, Jiang J: High-throughput real-time PCR. Methods Mol Biol 2008, 429:89-98.
  • [23]Oto OA, Paydas S, Tanriverdi K, Seydaoglu G, Yavuz S, Disel U: Survivin and EPR-1 expression in acute leukemias: prognostic significance and review of the literature. Leuk Res 2007, 31(11):1495-1501.
  • [24]Barragan E, Cervera J, Bolufer P, Ballester S, Martin G, Fernandez P, Collado R, Sayas MJ, Sanz MA: Prognostic implications of Wilms' tumor gene (WT1) expression in patients with de novo acute myeloid leukemia. Haematologica 2004, 89(8):926-933.
  • [25]Wojcik I, Szybka M, Golanska E, Rieske P, Blonski JZ, Robak T, Bartkowiak J: Abnormalities of the P53, MDM2, BCL2 and BAX genes in acute leukemias. Neoplasma 2005, 52(4):318-324.
  • [26]Nicolas E, Ramus C, Berthier S, Arlotto M, Bouamrani A, Lefebvre C, Morel F, Garin J, Ifrah N, Berger F, et al.: Expression of S100A8 in leukemic cells predicts poor survival in de novo AML patients. Leukemia 2011, 25(1):57-65.
  • [27]Haidar MA, Cao XB, Manshouri T, Chan LL, Glassman A, Kantarjian HM, Keating MJ, Beran MS, Albitar M: p16INK4A and p15INK4B gene deletions in primary leukemias. Blood 1995, 86(1):311-315.
  • [28]Kapelko-Slowik K, Wolowiec D, Sedek K, Jazwiec B, Urbaniak-Kujda D, Kuliczkowski K: [Expression of p16INK4a, p15INK4b, p21WAF1/Clip1 cell cycle inhibitors on blastic cells in patients with acute myeloblastic leukemia (AML) and acute lymphoblastic leukemia (ALL) ]. Pol Arch Med Wewn 2002, 108(3):849-853.
  • [29]Preisler HD, Li B, Chen H, Fisher L, Nayini J, Raza A, Creech S, Venugopal P: P15INK4B gene methylation and expression in normal, myelodysplastic, and acute myelogenous leukemia cells and in the marrow cells of cured lymphoma patients. Leukemia 2001, 15(10):1589-1595.
  • [30]Schwaller J, Pabst T, Koeffler HP, Niklaus G, Loetscher P, Fey MF, Tobler A: Expression and regulation of G1 cell-cycle inhibitors (p16INK4A, p15INK4B, p18INK4C, p19INK4D) in human acute myeloid leukemia and normal myeloid cells. Leukemia 1997, 11(1):54-63.
  • [31]Wang L: [Resistance of leukemia cells to Fas/FasL-mediated apoptosis and strategies replying to antiapoptosis of leukemia cells--review]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2007, 15(6):1325-1329.
  • [32]Chauchereau A, Mathieu M, de Saintignon J, Ferreira R, Pritchard LL, Mishal Z, Dejean A, Harel-Bellan A: HDAC4 mediates transcriptional repression by the acute promyelocytic leukaemia-associated protein PLZF. Oncogene 2004, 23(54):8777-8784.
  • [33]Gao C, Cheng X, Lam M, Liu Y, Liu Q, Chang KS, Kao HY: Signal-dependent regulation of transcription by histone deacetylase 7 involves recruitment to promyelocytic leukemia protein nuclear bodies. Mol Biol Cell 2008, 19(7):3020-3027.
  • [34]Xu X, Xie C, Edwards H, Zhou H, Buck SA, Ge Y: Inhibition of histone deacetylases 1 and 6 enhances cytarabine-induced apoptosis in pediatric acute myeloid leukemia cells. PLoS One 6(2):e17138.
  • [35]Moreno DA, Scrideli CA, Cortez MA, de Paula Queiroz R, Valera ET, da Silva Silveira V, Yunes JA, Brandalise SR, Tone LG: Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia. Br J Haematol 2010, 150(6):665-673.
  • [36]Kim SY, Hwang SH, Song EJ, Shin HJ, Jung JS, Lee EY: Level of HOXA5 hypermethylation in acute myeloid leukemia is associated with short-term outcome. Korean J Lab Med 2010, 30(5):469-473.
  • [37]Andreeff M, Ruvolo V, Gadgil S, Zeng C, Coombes K, Chen W, Kornblau S, Baron AE, Drabkin HA: HOX expression patterns identify a common signature for favorable AML. Leukemia 2008, 22(11):2041-2047.
  • [38]Rice KL, Licht JD: HOX deregulation in acute myeloid leukemia. J Clin Invest 2007, 117(4):865-868.
  • [39]Ohnishi K, Tobita T, Sinjo K, Takeshita A, Ohno R: Modulation of homeobox B6 and B9 genes expression in human leukemia cell lines during myelomonocytic differentiation. Leuk Lymphoma 1998, 31(5–6):599-608.
  • [40]Boucherat O, Guillou F, Aubin J, Jeannotte L: [Hoxa5: a master gene with multifaceted roles]. Med Sci (Paris) 2009, 25(1):77-82.
  • [41]Zangenberg M, Grubach L, Aggerholm A, Silkjaer T, Juhl-Christensen C, Nyvold CG, Kjeldsen E, Ommen HB, Hokland P: The combined expression of HOXA4 and MEIS1 is an independent prognostic factor in patients with AML. Eur J Haematol 2009, 83(5):439-448.
  • [42]Addeo R, Caraglia M, Baldi A, D'Angelo V, Casale F, Crisci S, Abbruzzese A, Vincenze B, Campioni M, Di Tullio MT, et al.: Prognostic role of bcl-xL and p53 in childhood acute lymphoblastic leukemia (ALL). Cancer Biol Ther 2005, 4(1):32-38.
  • [43]Blau O, Avigad S, Stark B, Kodman Y, Luria D, Cohen IJ, Zaizov R: Exon 5 mutations in the p53 gene in relapsed childhood acute lymphoblastic leukemia. Leuk Res 1997, 21(8):721-729.
  • [44]Felix CA, Hosler MR, Provisor D, Salhany K, Sexsmith EA, Slater DJ, Cheung NK, Winick NJ, Strauss EA, Heyn R, et al.: The p53 gene in pediatric therapy-related leukemia and myelodysplasia. Blood 1996, 87(10):4376-4381.
  • [45]Gump J, McGavran L, Wei Q, Hunger SP: Analysis of TP53 mutations in relapsed childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2001, 23(7):416-419.
  • [46]Gustafsson B, Christenson B, Hjalmar V, Winiarski J: Cellular expression of MDM2 and p53 in childhood leukemias with poor prognosis. Med Pediatr Oncol 2000, 34(2):117-124.
  • [47]Kattamis AC, Tsangaris GT, Vamvoukakis J, Moschovi M, Grafakos S, Tzortzatou-Stathopoulou F: Detection of minimal residual disease by mutant p53 immunocytochemistry in acute myelogenous leukemia. Med Pediatr Oncol 2000, 34(2):153-156.
  • [48]Kawamura M, Ohnishi H, Guo SX, Sheng XM, Minegishi M, Hanada R, Horibe K, Hongo T, Kaneko Y, Bessho F, et al.: Alterations of the p53, p21, p16, p15 and RAS genes in childhood T-cell acute lymphoblastic leukemia. Leuk Res 1999, 23(2):115-126.
  • [49]Saito S, Matsuda K, Taira C, Sano K, Tanaka-Yanagisawa M, Yanagisawa R, Nakazawa Y, Sakashita K, Shiohara M, Koike K: Genetic analysis of TP53 in childhood myelodysplastic syndrome and juvenile myelomonocytic leukemia. Leuk Res 2011, 35(12):1578-1584.
  • [50]Zhu N, Gu L, Findley HW, Chen C, Dong JT, Yang L, Zhou M: KLF5 Interacts with p53 in regulating survivin expression in acute lymphoblastic leukemia. J Biol Chem 2006, 281(21):14711-14718.
  文献评价指标  
  下载次数:0次 浏览次数:7次