期刊论文详细信息
Clinical Epigenetics
Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors
James R Davie1  Dilshad H Khan1  Geneviève P Delcuve1 
[1] Manitoba Institute of Cell Biology, University of Manitoba, 675 McDermot Avenue, Winnipeg, MB, R3E 0V9, Canada
关键词: epigenetics;    noncoding RNAs;    gene expression;    HDAC complexes;    HDAC inhibitors;    HDAC;    histone deacetylase;   
Others  :  791454
DOI  :  10.1186/1868-7083-4-5
 received in 2012-01-25, accepted in 2012-03-12,  发布年份 2012
PDF
【 摘 要 】

The zinc-dependent mammalian histone deacetylase (HDAC) family comprises 11 enzymes, which have specific and critical functions in development and tissue homeostasis. Mounting evidence points to a link between misregulated HDAC activity and many oncologic and nononcologic diseases. Thus the development of HDAC inhibitors for therapeutic treatment garners a lot of interest from academic researchers and biotechnology entrepreneurs. Numerous studies of HDAC inhibitor specificities and molecular mechanisms of action are ongoing. In one of these studies, mass spectrometry was used to characterize the affinities and selectivities of HDAC inhibitors toward native HDAC multiprotein complexes in cell extracts. Such a novel approach reproduces in vivo molecular interactions more accurately than standard studies using purified proteins or protein domains as targets and could be very useful in the isolation of inhibitors with superior clinical efficacy and decreased toxicity compared to the ones presently tested or approved. HDAC inhibitor induced-transcriptional reprogramming, believed to contribute largely to their therapeutic benefits, is achieved through various and complex mechanisms not fully understood, including histone deacetylation, transcription factor or regulator (including HDAC1) deacetylation followed by chromatin remodeling and positive or negative outcome regarding transcription initiation. Although only a very low percentage of protein-coding genes are affected by the action of HDAC inhibitors, about 40% of noncoding microRNAs are upregulated or downregulated. Moreover, a whole new world of long noncoding RNAs is emerging, revealing a new class of potential targets for HDAC inhibition. HDAC inhibitors might also regulate transcription elongation and have been shown to impinge on alternative splicing.

【 授权许可】

   
2012 Delcuve et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705013642269.pdf 501KB PDF download
Figure 2. 52KB Image download
Figure 1. 75KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Groth A, Rocha W, Verreault A, Almouzni G: Chromatin challenges during DNA replication and repair. Cell 2007, 128:721-733.
  • [2]Shahbazian MD, Grunstein M: Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 2007, 76:75-100.
  • [3]Tse C, Sera T, Wolffe AP, Hansen JC: Disruption of higher order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol 1998, 18:4629-4638.
  • [4]Wang X, He C, Moore SC, Ausio J: Effects of histone acetylation on the solubility and folding of the chromatin fiber. J Biol Chem 2001, 276:12764-12768.
  • [5]Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL: Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 2006, 311:844-847.
  • [6]Davie JR, He S, Li L, Sekhavat A, Espino P, Drobic B, Dunn KL, Sun JM, Chen HY, Yu J, Pritchard S, Wang X: Nuclear organization and chromatin dynamics: Sp1, Sp3 and histone deacetylases. Adv Enzyme Regul 2008, 48:189-208.
  • [7]Lee KK, Workman JL: Histone acetyltransferase complexes: one size doesn't fit all. Nat Rev Mol Cell Biol 2007, 8:284-295.
  • [8]Yang XJ, Seto E: HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 2007, 26:5310-5318.
  • [9]Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y, Ning ZB, Zeng R, Xiong Y, Guan KL, Zhao S, Zhao GP: Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 2010, 327:1004-1007.
  • [10]Patel J, Pathak RR, Mujtaba S: The biology of lysine acetylation integrates transcriptional programming and metabolism. Nutr Metab (Lond) 2011, 8:12. BioMed Central Full Text
  • [11]Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325:834-840.
  • [12]Latham JA, Dent SY: Cross-regulation of histone modifications. Nat Struct Mol Biol 2007, 14:1017-1024.
  • [13]Yang XJ, Seto E: Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 2008, 31:449-461.
  • [14]Hazzalin CA, Mahadevan LC: MAPK-regulated transcription: a continuously variable gene switch? Nat Rev Mol Cell Biol 2002, 3:30-40.
  • [15]Kouzarides T: Chromatin modifications and their function. Cell 2007, 128:693-705.
  • [16]Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, Shilatifard A, Workman J, Zhang Y: New nomenclature for chromatin-modifying enzymes. Cell 2007, 131:633-636.
  • [17]de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB: Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003, 370:737-749.
  • [18]Gregoretti IV, Lee YM, Goodson HV: Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 2004, 338:17-31.
  • [19]Smith KT, Workman JL: Histone deacetylase inhibitors: anticancer compounds. Int J Biochem Cell Biol 2009, 41:21-25.
  • [20]Witt O, Deubzer HE, Milde T, Oehme I: HDAC family: what are the cancer relevant targets? Cancer Lett 2009, 277:8-21.
  • [21]Marks PA: Histone deacetylase inhibitors: a chemical genetics approach to understanding cellular functions. Biochim Biophys Acta 2010, 1799:717-725.
  • [22]Wiech NL, Fisher JF, Helquist P, Wiest O: Inhibition of histone deacetylases: a pharmacological approach to the treatment of non-cancer disorders. Curr Top Med Chem 2009, 9:257-271.
  • [23]Wagner JM, Hackanson B, Lübbert M, Jung M: Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenetics 2010, 1:117-136.
  • [24]Haberland M, Montgomery RL, Olson EN: The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 2009, 10:32-42.
  • [25]Tsai SC, Seto E: Regulation of histone deacetylase 2 by protein kinase CK2. J Biol Chem 2002, 277:31826-31833.
  • [26]Brunmeir R, Lagger S, Seiser C: Histone deacetylase HDAC1/HDAC2-controlled embryonic development and cell differentiation. Int J Dev Biol 2009, 53:275-289.
  • [27]Jurkin J, Zupkovitz G, Lagger S, Grausenburger R, Hagelkruys A, Kenner L, Seiser C: Distinct and redundant functions of histone deacetylases HDAC1 and HDAC2 in proliferation and tumorigenesis. Cell Cycle 2011, 10:406-412.
  • [28]Lagger G, O'Carroll D, Rembold M, Khier H, Tischler J, Weitzer G, Schuettengruber B, Hauser C, Brunmeir R, Jenuwein T, Seiser C: Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 2002, 21:2672-2681.
  • [29]Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi X, Hill JA, Richardson JA, Olson EN: Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 2007, 21:1790-1802.
  • [30]Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger PR, Wurst W, Ferrari VA, Abrams CS, Gruber PJ, Epstein JA: Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3β activity. Nat Med 2007, 13:324-331.
  • [31]Zimmermann S, Kiefer F, Prudenziati M, Spiller C, Hansen J, Floss T, Wurst W, Minucci S, Göttlicher M: Reduced body size and decreased intestinal tumor rates in HDAC2-mutant mice. Cancer Res 2007, 67:9047-9054.
  • [32]MacDonald JL, Roskams AJ: Histone deacetylases 1 and 2 are expressed at distinct stages of neuro-glial development. Dev Dyn 2008, 237:2256-2267.
  • [33]Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJ, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho RA, Jaenisch R, Tsai LH: HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009, 459:55-60.
  • [34]Lagger S, Meunier D, Mikula M, Brunmeir R, Schlederer M, Artaker M, Pusch O, Egger G, Hagelkruys A, Mikulits W, Weitzer G, Muellner EW, Susani M, Kenner L, Seiser C: Crucial function of histone deacetylase 1 for differentiation of teratomas in mice and humans. EMBO J 2010, 29:3992-4007.
  • [35]Taplick J, Kurtev V, Kroboth K, Posch M, Lechner T, Seiser C: Homo-oligomerisation and nuclear localisation of mouse histone deacetylase 1. J Mol Biol 2001, 308:27-38.
  • [36]Luo Y, Jian W, Stavreva D, Fu X, Hager G, Bungert J, Huang S, Qiu Y: Trans-regulation of histone deacetylase activities through acetylation. J Biol Chem 2009, 284:34901-34910.
  • [37]Chiocca S, Kurtev V, Colombo R, Boggio R, Sciurpi MT, Brosch G, Seiser C, Draetta GF, Cotten M: Histone deacetylase 1 inactivation by an adenovirus early gene product. Curr Biol 2002, 12:594-598.
  • [38]He S, Sun JM, Li L, Davie JR: Differential intranuclear organization of transcription factors Sp1 and Sp3. Mol Biol Cell 2005, 16:4073-4083.
  • [39]Yamaguchi T, Cubizolles F, Zhang Y, Reichert N, Kohler H, Seiser C, Matthias P: Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev 2010, 24:455-469.
  • [40]Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K: Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 2009, 138:1019-1031.
  • [41]Sun JM, Chen HY, Davie JR: Differential distribution of unmodified and phosphorylated histone deacetylase 2 in chromatin. J Biol Chem 2007, 282:33227-33236.
  • [42]Hassig CA, Tong JK, Fleischer TC, Owa T, Grable PG, Ayer DE, Schreiber SL: A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc Natl Acad Sci USA 1998, 95:3519-3524.
  • [43]Yang XJ, Seto E: The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 2008, 9:206-218.
  • [44]Silverstein RA, Ekwall K: Sin3: a flexible regulator of global gene expression and genome stability. Curr Genet 2005, 47:1-17.
  • [45]Hayakawa T, Nakayama J: Physiological roles of class I HDAC complex and histone demethylase. J Biomed Biotechnol 2011, 2011:129383.
  • [46]Denslow SA, Wade PA: The human Mi-2/NuRD complex and gene regulation. Oncogene 2007, 26:5433-5438.
  • [47]Wang Y, Zhang H, Chen YP, Sun YM, Yang F, Yu WH, Liang J, Sun LY, Yang XH, Shi L, Li RF, Li YY, Zhang Y, Li Q, Yi X, Shang YF: LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 2009, 138:660-672.
  • [48]Liang J, Wan M, Zhang Y, Gu P, Xin H, Jung SY, Qin J, Wong J, Cooney AJ, Liu D, Songyang Z: Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells. Nat Cell Biol 2008, 10:731-739.
  • [49]Lee MG, Wynder C, Cooch N, Shiekhattar R: An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 2005, 437:432-435.
  • [50]Shi YJ, Matson C, Lan F, Iwase S, Baba T, Shi Y: Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 2005, 19:857-864.
  • [51]Cunliffe VT: Eloquent silence: developmental functions of class I histone deacetylases. Curr Opin Genet Dev 2008, 18:404-410.
  • [52]Battaglia S, Maguire O, Campbell MJ: Transcription factor co-repressors in cancer biology: roles and targeting. Int J Cancer 2010, 126:2511-2519.
  • [53]Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P, Michon AM, Schlegl J, Abraham Y, Becher I, Bergamini G, Boesche M, Delling M, Dümpelfeld B, Eberhard D, Huthmacher C, Mathieson T, Poeckel D, Reader V, Strunk K, Sweetman G, Kruse U, Neubauer G, Ramsden NG, Drewes G: Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotechnol 2011, 29:255-265.
  • [54]Perissi V, Jepsen K, Glass CK, Rosenfeld MG: Deconstructing repression: evolving models of co-repressor action. Nat Rev Genet 2010, 11:109-123.
  • [55]Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, Verdin E: Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 2002, 9:45-57.
  • [56]Métivier R, Penot G, Hübner MR, Reid G, Brand H, Kos M, Gannon F: Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 2003, 115:751-763.
  • [57]Bhaskara S, Knutson SK, Jiang G, Chandrasekharan MB, Wilson AJ, Zheng S, Yenamandra A, Locke K, Yuan JL, Bonine-Summers AR, Wells CE, Kaiser JF, Washington MK, Zhao Z, Wagner FF, Sun ZW, Xia F, Holson EB, Khabele D, Hiebert SW: Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell 2010, 18:436-447.
  • [58]Cedar H, Bergman Y: Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009, 10:295-304.
  • [59]Sharma S, Kelly TK, Jones PA: Epigenetics in cancer. Carcinogenesis 2010, 31:27-36.
  • [60]Verdin E, Dequiedt F, Kasler HG: Class II histone deacetylases: versatile regulators. Trends Genet 2003, 19:286-293.
  • [61]Parra M, Verdin E: Regulatory signal transduction pathways for class IIa histone deacetylases. Curr Opin Pharmacol 2010, 10:454-460.
  • [62]Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T, Mazitschek R: Chemical phylogenetics of histone deacetylases. Nat Chem Biol 2010, 6:238-243.
  • [63]Martin M, Kettmann R, Dequiedt F: Class IIa histone deacetylases: regulating the regulators. Oncogene 2007, 26:5450-5467.
  • [64]Martin M, Kettmann R, Dequiedt F: Class IIa histone deacetylases: conducting development and differentiation. Int J Dev Biol 2009, 53:291-301.
  • [65]Valenzuela-Fernández A, Cabrero JR, Serrador JM, Sánchez-Madrid F: HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol 2008, 18:291-297.
  • [66]Li G, Jiang H, Chang M, Xie H, Hu L: HDAC6 α-tubulin deacetylase: a potential therapeutic target in neurodegenerative diseases. J Neurol Sci 2011, 304:1-8.
  • [67]Aldana-Masangkay GI, Sakamoto KM: The role of HDAC6 in cancer. J Biomed Biotechnol 2011, 2011:875824.
  • [68]Villagra A, Sotomayor EM, Seto E: Histone deacetylases and the immunological network: implications in cancer and inflammation. Oncogene 2010, 29:157-173.
  • [69]Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP: Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 1999, 401:188-193.
  • [70]Bertrand P: Inside HDAC with HDAC inhibitors. Eur J Med Chem 2010, 45:2095-2116.
  • [71]Sekhavat A, Sun JM, Davie JR: Competitive inhibition of histone deacetylase activity by trichostatin A and butyrate. Biochem Cell Biol 2007, 85:751-758.
  • [72]Smith KT, Martin-Brown SA, Florens L, Washburn MP, Workman JL: Deacetylase inhibitors dissociate the histone-targeting ING2 subunit from the Sin3 complex. Chem Biol 2010, 17:65-74.
  • [73]Salisbury CM, Cravatt BF: Activity-based probes for proteomic profiling of histone deacetylase complexes. Proc Natl Acad Sci USA 2007, 104:1171-1176.
  • [74]Glozak MA, Sengupta N, Zhang X, Seto E: Acetylation and deacetylation of non-histone proteins. Gene 2005, 363:15-23.
  • [75]Wanczyk M, Roszczenko K, Marcinkiewicz K, Bojarczuk K, Kowara M, Winiarska M: HDACi: going through the mechanisms. Front Biosci 2011, 16:340-359.
  • [76]Gui CY, Ngo L, Xu WS, Richon VM, Marks PA: Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci USA 2004, 101:1241-1246.
  • [77]Simboeck E, Sawicka A, Zupkovitz G, Senese S, Winter S, Dequiedt F, Ogris E, Di Croce L, Chiocca S, Seiser C: A phosphorylation switch regulates the transcriptional activation of cell cycle regulator p21 by histone deacetylase inhibitors. J Biol Chem 2010, 285:41062-41073.
  • [78]Drobic B, Pérez-Cadahía B, Yu J, Kung SK, Davie JR: Promoter chromatin remodeling of immediate-early genes is mediated through H3 phosphorylation at either serine 28 or 10 by the MSK1 multi-protein complex. Nucleic Acids Res 2010, 38:3196-3208.
  • [79]Zhao Y, Lu S, Wu L, Chai G, Wang H, Chen Y, Sun J, Yu Y, Zhou W, Zheng Q, Wu M, Otterson GA, Zhu WG: Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21Waf1/Cip1. Mol Cell Biol 2006, 26:2782-2790.
  • [80]Radhakrishnan SK, Gierut J, Gartel AL: Multiple alternate p21 transcripts are regulated by p53 in human cells. Oncogene 2006, 25:1812-1815.
  • [81]Chen Y, Zhang L, Jones KA: SKIP counteracts p53-mediated apoptosis via selective regulation of p21Cip1 mRNA splicing. Genes Dev 2011, 25:701-716.
  • [82]Edmond V, Brambilla C, Brambilla E, Gazzeri S, Eymin B: SRSF2 is required for sodium butyrate-mediated p21WAF1 induction and premature senescence in human lung carcinoma cell lines. Cell Cycle 2011, 10:1968-1977.
  • [83]Hazzalin CA, Mahadevan LC: Dynamic acetylation of all lysine 4-methylated histone H3 in the mouse nucleus: analysis at c-fos and c-jun. PLoS Biol 2005, 3:e393.
  • [84]Zupkovitz G, Tischler J, Posch M, Sadzak I, Ramsauer K, Egger G, Grausenburger R, Schweifer N, Chiocca S, Decker T, Seiser C: Negative and positive regulation of gene expression by mouse histone deacetylase 1. Mol Cell Biol 2006, 26:7913-7928.
  • [85]Smith CL: A shifting paradigm: histone deacetylases and transcriptional activation. Bioessays 2008, 30:15-24.
  • [86]Lee SC, Magklara A, Smith CL: HDAC activity is required for efficient core promoter function at the mouse mammary tumor virus promoter. J Biomed Biotechnol 2011, 2011:416905.
  • [87]Qiu Y, Zhao Y, Becker M, John S, Parekh BS, Huang S, Hendarwanto A, Martinez ED, Chen Y, Lu H, Adkins NL, Stavreva DA, Wiench M, Georgel PT, Schiltz RL, Hager GL: HDAC1 acetylation is linked to progressive modulation of steroid receptor-induced gene transcription. Mol Cell 2006, 22:669-679.
  • [88]Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC: Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 2006, 66:1277-1281.
  • [89]Iorio MV, Piovan C, Croce CM: Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta 2010, 1799:694-701.
  • [90]Sato F, Tsuchiya S, Meltzer SJ, Shimizu K: MicroRNAs and epigenetics. FEBS J 2011, 278:1598-1609.
  • [91]Lujambio A, Esteller M: How epigenetics can explain human metastasis: a new role for microRNAs. Cell Cycle 2009, 8:377-382.
  • [92]Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, Roman-Gomez J, Prosper F, Garcia-Foncillas J: Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer 2009, 125:2737-2743.
  • [93]Lee EM, Shin S, Cha HJ, Yoon Y, Bae S, Jung JH, Lee SM, Lee SJ, Park IC, Jin YW, An S: Suberoylanilide hydroxamic acid (SAHA) changes microRNA expression profiles in A549 human non-small cell lung cancer cells. Int J Mol Med 2009, 24:45-50.
  • [94]Zhang S, Cai X, Huang F, Zhong W, Yu Z: Effect of trichostatin A on viability and microRNA expression in human pancreatic cancer cell line BxPC-3. Exp Oncol 2008, 30:265-268.
  • [95]Li X, Liu J, Zhou R, Huang S, Huang S, Chen XM: Gene silencing of MIR22 in acute lymphoblastic leukaemia involves histone modifications independent of promoter DNA methylation. Br J Haematol 2010, 148:69-79.
  • [96]Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L, Diverio D, Ammatuna E, Cimino G, Lo-Coco F, Grignani F, Nervi C: Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 2007, 12:457-466.
  • [97]Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM, Hirata H, Giardina C, Dahiya R: miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 2009, 28:1714-1724.
  • [98]Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B, Majumder S, Liu CG, Volinia S, Croce CM, Schmittgen TD, Ghoshal K, Jacob ST: Methylation mediated silencing of microRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 2008, 68:5049-5058.
  • [99]Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, Clark I, Dalmay T: The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 2006, 580:4214-4217.
  • [100]Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006, 38:228-233.
  • [101]Gonzalez S, Pisano DG, Serrano M: Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs. Cell Cycle 2008, 7:2601-2608.
  • [102]Kim DH, Saetrom P, Snøve O Jr, Rossi JJ: MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA 2008, 105:16230-16235.
  • [103]Suzuki K, Kelleher AD: Transcriptional regulation by promoter targeted RNAs. Curr Top Med Chem 2009, 9:1079-1087.
  • [104]Turner AM, Morris KV: Controlling transcription with noncoding RNAs in mammalian cells. Biotechniques 2010, 48:ix-xvi.
  • [105]Suzuki K, Juelich T, Lim H, Ishida T, Watanebe T, Cooper DA, Rao S, Kelleher AD: Closed chromatin architecture is induced by an RNA duplex targeting the HIV-1 promoter region. J Biol Chem 2008, 283:23353-23363.
  • [106]Mattick JS: The central role of RNA in human development and cognition. FEBS Lett 2011, 585:1600-1616.
  • [107]Rodríguez-Campos A, Azorín F: RNA is an integral component of chromatin that contributes to its structural organization. PLoS One 2007, 2:e1182.
  • [108]Brandl A, Heinzel T, Krämer OH: Histone deacetylases: salesmen and customers in the post-translational modification market. Biol Cell 2009, 101:193-205.
  • [109]Segré CV, Chiocca S: Regulating the regulators: the post-translational code of class I HDAC1 and HDAC2. J Biomed Biotechnol 2011, 2011:690848.
  • [110]Pflum MK, Tong JK, Lane WS, Schreiber SL: Histone deacetylase 1 phosphorylation promotes enzymatic activity and complex formation. J Biol Chem 2001, 276:47733-47741.
  • [111]Sun JM, Chen HY, Moniwa M, Litchfield DW, Seto E, Davie JR: The transcriptional repressor Sp3 is associated with CK2 phosphorylated histone deacetylase 2. J Biol Chem 2002, 277:35783-35786.
  • [112]Galasinski SC, Resing KA, Goodrich JA, Ahn NG: Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. J Biol Chem 2002, 277:19618-19626.
  • [113]Zhang X, Ozawa Y, Lee H, Wen YD, Tan TH, Wadzinski BE, Seto E: Histone deacetylase 3 (HDAC3) activity is regulated by interaction with protein serine/threonine phosphatase 4. Genes Dev 2005, 19:827-839.
  • [114]Rajendran P, Delage B, Dashwood WM, Yu TW, Wuth B, Williams DE, Ho E, Dashwood RH: Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3/SMRT corepressor complex dissociation/reassembly. Mol Cancer 2011, 10:68. BioMed Central Full Text
  • [115]Barnes PJ: Role of HDAC2 in the pathophysiology of COPD. Annu Rev Physiol 2009, 71:451-464.
  • [116]Adenuga D, Yao H, March TH, Seagrave J, Rahman I: Histone deacetylase 2 is phosphorylated, ubiquitinated, and degraded by cigarette smoke. Am J Respir Cell Mol Biol 2009, 40:464-473.
  • [117]Roche N, Marthan R, Berger P, Chambellan A, Chanez P, Aguilaniu B, Brillet PY, Burgel PR, Chaouat A, Devillier P, Escamilla R, Louis R, Mal H, Muir JF, Pérez T, Similowski T, Wallaert B, Aubier M: Beyond corticosteroids: future prospects in the management of inflammation in COPD. Eur Respir Rev 2011, 20:175-182.
  • [118]Chung KF, Marwick JA: Molecular mechanisms of oxidative stress in airways and lungs with reference to asthma and chronic obstructive pulmonary disease. Ann N Y Acad Sci 2010, 1203:85-91.
  • [119]Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, Shia WJ, Anderson S, Yates J, Washburn MP, Workman JL: Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 2005, 123:581-592.
  • [120]Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V, Collins SR, Schuldiner M, Chin K, Punna T, Thompson NJ, Boone C, Emili A, Weissman JS, Hughes TR, Strahl BD, Grunstein M, Greenblatt JF, Buratowski S, Krogan NJ: Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 2005, 123:593-605.
  • [121]Li B, Gogol M, Carey M, Lee D, Seidel C, Workman JL: Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 2007, 316:1050-1054.
  • [122]Jelinic P, Pellegrino J, David G: A novel mammalian complex containing Sin3B mitigates histone acetylation and RNA polymerase II progression within transcribed loci. Mol Cell Biol 2011, 31:54-62.
  • [123]Hnilicová J, Hozeifi S, Dušková E, Icha J, Tománková T, Staněk D: Histone deacetylase activity modulates alternative splicing. PLoS One 2011, 6:e16727.
  • [124]Fox-Walsh K, Fu XD: Chromatin: the final frontier in splicing regulation? Dev Cell 2010, 18:336-338.
  • [125]Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T: Epigenetics in alternative pre-mRNA splicing. Cell 2011, 144:16-26.
  • [126]Taft RJ, Simons C, Nahkuri S, Oey H, Korbie DJ, Mercer TR, Holst J, Ritchie W, Wong JJ, Rasko JE, Rokhsar DS, Degnan BM, Mattick JS: Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nat Struct Mol Biol 2010, 17:1030-1034.
  • [127]Zhou HL, Hinman MN, Barron VA, Geng C, Zhou G, Luo G, Siegel RE, Lou H: Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation in an RNA-dependent manner. Proc Natl Acad Sci USA 2011, 108:E627-E635.
  • [128]Clayton AL, Hazzalin CA, Mahadevan LC: Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell 2006, 23:289-296.
  • [129]Gunderson FQ, Merkhofer EC, Johnson TL: Dynamic histone acetylation is critical for cotranscriptional spliceosome assembly and spliceosomal rearrangements. Proc Natl Acad Sci USA 2011, 108:2004-2009.
  • [130]Chang J, Varghese DS, Gillam MC, Peyton M, Modi B, Schiltz RL, Girard L, Martinez ED: Differential response of cancer cells to HDAC inhibitors trichostatin A and depsipeptide. Br J Cancer 2012, 106:116-125.
  • [131]Lössner C, Meier J, Warnken U, Rogers MA, Lichter P, Pscherer A, Schnölzer M: Quantitative proteomics identify novel miR-155 target proteins. PLoS One 2011, 6:e22146.
  文献评价指标  
  下载次数:10次 浏览次数:9次